Если какие-нибудь две прямые пересечены третьей прямой, то пересекающая их прямая называется секущей по отношению к прямым, которые она пересекает.
При пересечении двух прямых третьей, образуется два вида углов: внешние и внутренние.
внутренние и внешние углы при двух пересечённых прямых
На рисунке изображены две прямые a и b, пересекаемые прямой c. Прямая c по отношению к прямым a и b является секущей. Синим цветом на рисунке обозначены внешние углы (∠1, ∠2, ∠7 и ∠8), а красным внутренние углы (∠3, ∠4, ∠5 и ∠6).
1)Дано: ∆АВС - равнобедренный.
∠В = 96°
Найти:
∠А, ∠С.
У равнобедренного треугольника углы при основании равны.
оба угла не могут быть по 96°, так как сумма углов треугольника равна 180°
Поэтому ∠В = 96°
180 - 96 = 84° - сумма углов при основании. (На рисунке углы при основании А и С)
Так как ∠А = ∠С => ∠А = ∠С = 84 ÷ 2 = 42°
ответ: 42°, 42°.
2) Дано:
∆CDE
∠E = 32°
CF - биссектриса.
∠CFD = 72°
Найти:
∠D
Сумма смежных углов равна 180°
∠CFD смежный с ∠CFE => ∠CFE = 180 - 72 = 108°
Сумма углов треугольника равна 180°
=> ЕCF = 180 - (108 + 32) = 40°
Так как СF - биссектриса => ∠С = 40 × 2 = 80°
Сумма углов треугольника равна 180°
=> ∠D = 180 - (32 + 80) = 68°
ответ: 68°
ответ 2
объяснение
Если какие-нибудь две прямые пересечены третьей прямой, то пересекающая их прямая называется секущей по отношению к прямым, которые она пересекает.
При пересечении двух прямых третьей, образуется два вида углов: внешние и внутренние.
внутренние и внешние углы при двух пересечённых прямых
На рисунке изображены две прямые a и b, пересекаемые прямой c. Прямая c по отношению к прямым a и b является секущей. Синим цветом на рисунке обозначены внешние углы (∠1, ∠2, ∠7 и ∠8), а красным внутренние углы (∠3, ∠4, ∠5 и ∠6).