1)четырехугольник - это квадрат. Его сторона равна диаметру вписанной окружности, т. е 2R, где R- радиус вписанной окружности. Тогда площадь квадрата равна
Sкв = 4R^2
2) Разобьем шестиугольник на 6 треугольников отрезками, выходящими из центра к вершинам шестиугольника. Все эти треугольники правильные и равны между собой, т.к. угол при вершине 60 градусов и они равнобедренные, а высотой треугольника является радиус вписанной окружности, т. е. R. Сторону треугольников обозначим через X. Рассмотрим один из треугольников. Высота является в нем и медианой. Тогда, рассмотрев треугольник, образованный отрезком, проведенным из центра, половиной основания и высотой, имеем по теореме Пифагора
R^2 +(X/2)^2 = X^2, откуда X^2= 4R^2/3, X =2R/корень из 3 Площадь треугольника Sтр=X*R/2= 2R*R/2*корень из 3 =R^2/корень из 3 Площадь шестиугольника Sш =6Sтр= 6R^2/корень из 3 = 2* корень из 3* R^2
Отношение площадей Sкв/Sш = 4R2/2* корень из 3* R^2 = 2/корень из 3
Сначала найдем точку пересечения диагоналей параллелограмма, зная, что в этой точке диагонали делятся пополам. Координаты середины отрезка AС найдем по формуле: x = (x1 + x2)/2, y = (y1 + y2)/2, z = (z1 + z2)/2. В нашем случае Хо=(Хa+Xc )/2=(2+4 )/2=3, Yо=(Ya+Yc )/2=(3+1 )/2=2, Zо=(Za+Zc )/2=(2+0 )/2=1. Итак, мы имеем точку пересечения диагоналей параллелограмма О(3;2;1). Теперь по этой же формуле найдем координаты вершины D параллелограмма. (Xb+Xd)/2=Xo, отсюда Xd=2*Xo+Xb=2*3+0=6, аналогично. Yd=2*Yo+Yb=2*2+2=6 и Zd=2*Zo+Zb=2*1+4=6. Имеем точку D(6;6;6) Координаты вектора равны разности соответствующих координат точек его конца и начала BD{Xd-Xb;Yd-Yb;Zd-Zb} или BD{6;4;2} Длина вектора BD, или его модуль, находится по формуле: |BD|=√(X²+Y²+Z²) = √(6²+4²+2²) =√56 = 2√14. ответ: длина диагонали BD равна 2√14.
Sкв = 4R^2
2) Разобьем шестиугольник на 6 треугольников отрезками, выходящими из центра к вершинам шестиугольника. Все эти треугольники правильные и равны между собой, т.к. угол при вершине 60 градусов и они равнобедренные, а высотой треугольника является радиус вписанной окружности, т. е. R. Сторону треугольников обозначим через X. Рассмотрим один из треугольников.
Высота является в нем и медианой. Тогда, рассмотрев треугольник, образованный отрезком, проведенным из центра, половиной основания и высотой, имеем по теореме Пифагора
R^2 +(X/2)^2 = X^2, откуда
X^2= 4R^2/3, X =2R/корень из 3
Площадь треугольника
Sтр=X*R/2= 2R*R/2*корень из 3 =R^2/корень из 3
Площадь шестиугольника
Sш =6Sтр= 6R^2/корень из 3 = 2* корень из 3* R^2
Отношение площадей
Sкв/Sш = 4R2/2* корень из 3* R^2 = 2/корень из 3
В нашем случае Хо=(Хa+Xc )/2=(2+4 )/2=3, Yо=(Ya+Yc )/2=(3+1 )/2=2, Zо=(Za+Zc )/2=(2+0 )/2=1. Итак, мы имеем точку пересечения диагоналей параллелограмма О(3;2;1).
Теперь по этой же формуле найдем координаты вершины D параллелограмма.
(Xb+Xd)/2=Xo, отсюда Xd=2*Xo+Xb=2*3+0=6, аналогично. Yd=2*Yo+Yb=2*2+2=6 и Zd=2*Zo+Zb=2*1+4=6. Имеем точку D(6;6;6)
Координаты вектора равны разности соответствующих координат точек его конца и начала BD{Xd-Xb;Yd-Yb;Zd-Zb} или BD{6;4;2}
Длина вектора BD, или его модуль, находится по формуле:
|BD|=√(X²+Y²+Z²) = √(6²+4²+2²) =√56 = 2√14.
ответ: длина диагонали BD равна 2√14.