Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности.
Пусть ребро призмы равно а.
Грани - квадраты, их 3.
S бок=3а²
S двух осн.=( 2 а²√3):4=( а²√3):2
По условию
3а²+(а²√3):2=8+16√3
Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3)
а²=16(1+2√3):(6+√3)
Подставим значение а² в формулу площади правильного треугольника:
S=[16*(1+2√3):(6+√3)]*√3:4
S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
АС=√7см
Объяснение:
Дано:
ABCD- трапеция
АВ=CD=√3см
BC=1см
<ABC=150°
АС=?
___________
В равнобокой трапеции углы при основаниях равны.
<АВС=<ВСD
<BAD=<CDA
В трапеции сумма углов прилежащих к боковой стороне равна 180°
<СDA=180°-<BCD=180°-150°=130°
Проведём две высоты СК и ВМ.
АМ=KD
∆CKD- прямоугольный.
sin<CDK=CK/CD
sin30°=1/2
1/2=CK/√3
CK=√3/2 см.
cos<CDK=KD/CD
cos30°=√3/2
√3/2=KD/√3
KD=√3√3/2=1,5см.
ВС=МК=1см
АК=АМ+МК=1,5+1=2,5см
∆АСК- прямоугольный треугольник
По теореме Пифагора
АС²=АК²+СК²=2,5²+(√3/2)²=6,25+0,75=7см
АС=√7см