Диагонали трапеции «высекают» в ней подобные треугольники. ∆ВОС~∆ АОД по равным углам: углы при основаниях равны как накрестлежащие; при точке О - как вертикальные. k=АО:ОС=3. Отношение площадей подобных фигур равно квадрату коэффициента их подобия. ⇒ Ѕ(АОД):Ѕ(ВОС)=3²=9 ⇒ Ѕ(АОД)=36•9=324.
Высота в ∆ АВО и ВОС общая. Отношение площадей треугольников с равными высотами равно отношению сторон, к которым высоты проведены. Ѕ(АВО)=3Ѕ(ВСО)=36•3)=108 Аналогично Ѕ(СОД)=3Ѕ(ВОС)=108. (попутно заметим, что площади треугольников, образованных частями диагоналей и боковыми сторонами трапеции всегда равны именно по этому свойству). Площадь трапеции АВСД равна сумме площадей четырех треугольников. S(АВСД)=36+324+2•108=576 ( ед. площади)
Из комментария к вопросу - исправленное условие. Две плоскости параллельны между собой. С точки К, которая не лежит в этих плоскостях или между ними, проведены две прямые, которые пересекают эти плоскости соответственно в точках А1 и А2 и В1 и В2. КА1=3 см, В1В2=12 см, А1А2=КВ1. Найти КА2.
Через три точки можно провести плоскость.⇒
Все точки прямых КА2 и КВ2 лежат в одной плоскости. Если плоскость пересекает две параллельные плоскости, то линии их пересечения параллельны. ⇒А1В1|║А2В2.
Треугольники КА2В2 и КА1В1 подобны по равным углам.
Диагонали трапеции «высекают» в ней подобные треугольники. ∆ВОС~∆ АОД по равным углам: углы при основаниях равны как накрестлежащие; при точке О - как вертикальные. k=АО:ОС=3. Отношение площадей подобных фигур равно квадрату коэффициента их подобия. ⇒ Ѕ(АОД):Ѕ(ВОС)=3²=9 ⇒ Ѕ(АОД)=36•9=324.
Высота в ∆ АВО и ВОС общая. Отношение площадей треугольников с равными высотами равно отношению сторон, к которым высоты проведены. Ѕ(АВО)=3Ѕ(ВСО)=36•3)=108 Аналогично Ѕ(СОД)=3Ѕ(ВОС)=108. (попутно заметим, что площади треугольников, образованных частями диагоналей и боковыми сторонами трапеции всегда равны именно по этому свойству). Площадь трапеции АВСД равна сумме площадей четырех треугольников. S(АВСД)=36+324+2•108=576 ( ед. площади)
Через три точки можно провести плоскость.⇒
Все точки прямых КА2 и КВ2 лежат в одной плоскости. Если плоскость пересекает две параллельные плоскости, то линии их пересечения параллельны. ⇒А1В1|║А2В2.
Треугольники КА2В2 и КА1В1 подобны по равным углам.
Из подобия следует
КА2:КА1=КВ2:КВ1
Обозначим А1А2=КВ1=а
Тогда (а+3):а=(а+12):а ⇒
а²=36, а=√36=6 см
КА2=КА1+А1А2=9 см