Рассчитываем объем произвольной призмыОбъем параллелепипеда равен произведению площади основания параллелепипеда на его высоту. Площадь основания параллелепипеда будет ровняться удвоенной площади треугольника, а высота равна высоте данной призмы. Вытекает отсюда, что объем произвольной призмы рассчитывается как произведение ее основания на ее высоту. Таким методом мы дали ответ на то, как найти объем треугольной призмы.Но в основе призмы может быть любой многоугольник. Тогда основу делим на треугольники. В результате данная призма будет разделена на треугольные призмы, которые имеют ту же высоту, что и данная прима. Сумма всех объемов треугольных призм, из которых состоит призма будет составлять объем данной призмы. Исходя из выше доказанной теории, можно сказать, что объем треугольной призмы можно найти, как произведение площади основания такой призмы на ее высоту. Доказано, что объем такой треугольной призмы рассчитывается по формуле:V = S1 × h + S2 × h + … + Sⁿ × h = (S1 + S2 + … + Sⁿ) h, где S1, S2, …Sⁿ - площади треугольников, на которые разбита основа треугольной призмы, а высота призмы обозначена буквой h. Сумма всех площадей треугольников будет равна S- площади основы такой призмы. Отсюда V = S × h.Эта формула также дает ответ на вопрос - как найти объем правильной призмы, он вычисляется так же.
Чтобы измерить, например, высоту холма, нивелировщик устанавливает нивелир у его подошвы строго вертикально, по отвесу. Горизонтальная планка нивелира должна быть направлена к склону холма. Глядя вдоль планки, нивелировщик замечает, в какую точку она направлена. В эту точку нивелировщика вбивает первый колышек. Поскольку высота нивелира равна 1 м, вбитый колышек находится на 1 м выше того места, где установлен нивелир. Затем нивелировщик переносит нивелир на место первого колышка и указывает куда вбить второй колышек.