Сделав чертеж, можно увидеть, что АС - это диагональ основания (квадрата), SО - высота пирамиды. Т. к. пирамида правильная, то все её боковые рёбра равны, т.е. SA = SB = SC = SD. Высота, боковое ребро и половина диагонали АС образуют прямоугольный треугольник, где боковое ребро - гипотенуза. Поэтому по тереме Пифагора: АО² + SО² = SA², откуда боковое ребро SA² = 51² + 68² = 2601 + 4624 = 7225, откуда SA = 85 см. Значит, SD = 85 см.
Т. к. пирамида правильная, то все её боковые рёбра равны, т.е. SA = SB = SC = SD.
Высота, боковое ребро и половина диагонали АС образуют прямоугольный треугольник, где боковое ребро - гипотенуза.
Поэтому по тереме Пифагора: АО² + SО² = SA², откуда боковое ребро
SA² = 51² + 68² = 2601 + 4624 = 7225, откуда SA = 85 см.
Значит, SD = 85 см.