Вписанный угол равен
Выберите ответ
половине дуги на которую он опирается
двойной величине дуги, на которую он опирается
дуге, на которую он опирается
2)Центральный угол равен
Выберите ответ
дуге, на которую он опирается
двойной величине дуги, на которую он опирается
половине дуги, на которую он опирается
3)Чему равен вписанный угол, опирающийся на дугу в 1000 (в ответ только число)
4). Точка О — центр окружности, ∠AOB = 84° (см. рисунок). Найдите величину угла ACB (в градусах).
5).Чему равен вписанный угол, опирающийся на дугу в 1200 (в ответ только число)
6).Чему равен центральный угол, опирающийся на дугу в 800 (в ответ только число)
7).Угол, вершина которого лежит в центре окружности называется
29,6 км/год
Объяснение:
Час шляху дорівнюватиме часу вниз за течією + час вгору за течією. Тобто: 24 / (Vпароплава + 4) + 24 / (Vпароплава - 4) = 2,5 год.
Приводимо до спільного знаменника і отримуємо:
(24(Vпароплава + 4) + 24(Vпароплава - 4)) / (Vпароплава + 4)(Vпароплава - 4) = 2,5
Виносимо 24 за дужки, і перемножуємо праву і ліву частину рівняння за правилом пропорції. У нас виходить квадратне рівняння. Вирішуємо його, і отримуємо два Vпароплава. Одне негативне - ця відповідь не підходить. А друге 29.6 км/год.
Вот и ответ.
Если продлить боковые стороны до пересечения, то получится прямоугольный треугольник.
Если есть прямоугольная система координат XOY (внимание - буквой O обозначено начало кооринат, а не центр окружности! в применении к задаче - это точка пересечения AB и CD) и окружность, касающаяся оси OY и пресекающая ось OX в 2 точках, то её уравнение в самом общем виде (x - R)^2 + (y - a)^2 = R^2; точка (R, a) - центр.
=> x^2 - 2xR + (y-a)^2 = 0; при y = 0; x^2 - 2xR + a^2 = 0;
корни R - √(R^2 - a^2) и R + √(R^2 - a^2); пусть эти точки совпадают с точками A и B в условии, тогда при AB = 11
2√(R^2 - a^2) = 11;
Еще неиспользованное условие - AD/DC = 3/2; из того, что треугольники OBC и OAD подобны (я напоминаю, что буквой O я обозначил начало координат, а не центр окружности), ясно, что OA/OB = 3/2; или
(R + √(R^2 - a^2))/(R - √(R^2 - a^2)) = 3/2;
ну вот, по смыслу задача решилась, и ответ гораздо ближе, чем кажется :) потому что
простая подстановка дает
(R + 11/2)/(R - 11/2) = 3/2; => R = 55/2;