Параллелограмм – четырёхугольник, у которого противоположные стороны попарно параллельны. Свойства параллелограмма: 1. Противоположные стороны и противоположные углы параллелограмма равны. 2. Диагональ параллелограмма делит его на два равных треугольника. 3. Диагонали параллелограмма делятся точкой пересечения пополам, эта точка является центром симметрии параллелограмма. 4. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон. 5. Высотой параллелограмма называется перпендикуляр, опущенный из вершины параллелограмма на прямую, содержащую противоположную сторону. 6. Параллелограмм можно вписать в окружность в том случае, если он - прямоугольник. 7. В параллелограмм можно вписать окружность в том случае, если он – ромб.
Площадь трапеции равна произведению полусуммы оснований на высоту. Нужно вычислить высоту. 1. Начерти чертеж к задаче. Через точку пересечения диагоналей проведи перпендикуляр к основаниям трапеции - высоту. 2. Рассматриваем 2 прямоугольных равнобедренных треугольника - нижний - Н (гипотенузой является нижнее основание) и верхний - В (гипотенузой является верхнее основание). 3. Построенный через точку пересечения диагоналей перпендикуляр к основаниям трапеции представляет собой высоту трапеции и равен сумме высот, опущенных на гипотенузу в треугольниках Н и В. Высота треугольника Н равна половине гипотенузы, т.е. половине нижнего основания трапеции (это очевидно, так как углы, прилежащие к гипотенузе равны 45 градусов). Аналогично, высота треугольника В равна половине верхнего основания трапеции. 4. Отсюда следует, что высота трапеции равна полусумме верхнего и нижнего оснований трапеции, т.е. ее средней линии. Значит, площадь данной трапеции равна: S = 18/2 * 18/2 = 81 см^2.
Свойства параллелограмма:
1. Противоположные стороны и противоположные углы параллелограмма равны.
2. Диагональ параллелограмма делит его на два равных треугольника.
3. Диагонали параллелограмма делятся точкой пересечения пополам, эта точка является центром симметрии параллелограмма.
4. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон.
5. Высотой параллелограмма называется перпендикуляр, опущенный из вершины параллелограмма на прямую, содержащую противоположную сторону.
6. Параллелограмм можно вписать в окружность в том случае, если он - прямоугольник.
7. В параллелограмм можно вписать окружность в том случае, если он – ромб.
S=aha
Ha =b sinα
S=ab sinα
S=0,5 d1d2sinφ
1. Начерти чертеж к задаче. Через точку пересечения диагоналей проведи перпендикуляр к основаниям трапеции - высоту.
2. Рассматриваем 2 прямоугольных равнобедренных треугольника - нижний - Н (гипотенузой является нижнее основание) и верхний - В (гипотенузой является верхнее основание).
3. Построенный через точку пересечения диагоналей перпендикуляр к основаниям трапеции представляет собой высоту трапеции и равен сумме высот, опущенных на гипотенузу в треугольниках Н и В. Высота треугольника Н равна половине гипотенузы, т.е. половине нижнего основания трапеции (это очевидно, так как углы, прилежащие к гипотенузе равны 45 градусов). Аналогично, высота треугольника В равна половине верхнего основания трапеции.
4. Отсюда следует, что высота трапеции равна полусумме верхнего и нижнего оснований трапеции, т.е. ее средней линии. Значит, площадь данной трапеции равна: S = 18/2 * 18/2 = 81 см^2.