В4-угольнике abcd на стороне cd взята точка m так, что am перпендикулярна bm, bc=cm и ad=dm. а) докажите, что bc паралельна ad. б) найдите площадь abm, если cm: md =2: 1, а s abcd = 36
Сумма углов треугольника равна 180 градусам. Угол А в два раза меньше угла В, т.е. градусную меру угла В составляет некое число, умноженное на два, а градусную меру угла А просто это число. Отсюда можно найти градусную меру этой части, за счёт чего в дальнейшем найти градусные меры угла. Градусная мера угла С меньше заданной нами части градусной меры углов на 20 градусов, чтобы найти эту часть нужно эту разницу в 20 градусов прибавить к 180, тогда мы получаем следующее уравнение: x+2x+x=200, 4x=200, x=50 градусов. Теперь просто подставляем найденную нами величину в заданные условием величины наших углов. Угол А=50 градусов, угол В=2*50=100 градусов, а угол С=50-20=30. Проверим найденные значения на верность, их сумма должна быть равна 180 градусам: 100+500+30=180, так и есть, следовательно, найденные градусные меры углов верны. ответ: угол А=50 градусов, угол В=100 градусов, угол С=30 градусов.
Градусная мера угла С меньше заданной нами части градусной меры углов на 20 градусов, чтобы найти эту часть нужно эту разницу в 20 градусов прибавить к 180, тогда мы получаем следующее уравнение:
x+2x+x=200, 4x=200, x=50 градусов. Теперь просто подставляем найденную нами величину в заданные условием величины наших углов.
Угол А=50 градусов, угол В=2*50=100 градусов, а угол С=50-20=30.
Проверим найденные значения на верность, их сумма должна быть равна 180 градусам:
100+500+30=180, так и есть, следовательно, найденные градусные меры углов верны.
ответ: угол А=50 градусов, угол В=100 градусов, угол С=30 градусов.
КМ - средняя линия основания.
SAKM - отсеченная пирамида.
Vsabc = 12
Vsabc = 1/3 Sabc · h
Vsakm = 1/3 Sakm · h, так как эти пирамиды имеют общую высоту.
Рассмотрим треугольники АВС и АКМ:
АК : АВ = 1 : 2
АМ : АС = 1 : 2
угол при вершине А общий, значит треугольники подобны по двум пропорциональным сторонам и углу между ними.
k = 1/2
Площади подобных треугольников относятся как квадрат коэффициента подобия:
Sakm : S abc = 1 : 4
Sakm = 1/4 Sabc
Vsakm = 1/3 · 1/4 Sabc · h = 1/4 (1/3 Sabc · h) = 1/4 Vsabc
Vsakm = 1/4 · 12 = 3