В треугольнике ABC проведена биссектриса CP при чем AC/AP = 2/1. известно что угол CAB =2 углам CBA. Найдите велечину наибольшего угла треугольника ABC
Для плоского треугольника со сторонами a,b,c и углом α, противолежащим стороне a, справедливо соотношение:
Квадрат одной стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного их произведения, умноженного на косинус угла между ними.
Доказательство теоремы косинусов
Рассмотрим произвольный треугольник ABC. Предположим, что нам известна величина стороны AC (она равна некому числу b), величина стороны AB (она равна некому числу c) и угол между этими сторонами, величина которого равна α. Найдем величину стороны BC (обозначив ее длину через переменную a)
Для доказательства теоремы косинусов проведем дополнительные построения. Из вершины C на сторону AB опустим высоту CD. Найдем длину стороны AB. Как видно из рисунка, в результате дополнительного построения можно сказать, что
Найдем длину отрезка AD. Исходя из того, что треугольник ADC является прямоугольным, нам известны длина его гипотенузы (b) и угол (α) то величину стороны AD можно найти из соотношения его сторон, пользуясь свойствами тригонометрических функций в прямоугольном треугольнике:
откуда
Длину стороны BD найдем как разность AB и AD:
Теперь запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC: для треугольника BDC
для треугольника ADC
Обратим внимание на то, что оба треугольника имеют общую сторону - CD. Определим ее длину для каждого треугольника - вынесем ее значение в левую часть выражения, а остальное - в правую.
Поскольку левые части уравнений (квадрат стороны CD) равны, то приравняем правые части уравнений:
Исходя из сделанных ранее вычислений, мы уже знаем что:
AC = b (по условию)
А значение стороны BC обозначим как a. BC = a (Именно его нам и нужно найти)
Получим:
Заменим буквенные обозначения сторон на результаты наших вычислений
перенесем неизвестное значение (а) на левую сторону, а остальные части уравнения - на правую
раскроем скобки
получаем
Теорема косинусов доказана.
Случай, когда один из углов при основании тупой (и высота падает на продолжение основания), полностью аналогичен рассмотренному.
<ВАР=30⁰, <APB = 60⁰ в треугольнике АВР. Смежный угол <APC=120⁰
Треугольник АРС - равнобедренный (АР=РС по доказанному), РО - высота, медиана, биссектриса, т.е. <АРО=<СРО=60⁰, <РАО=30⁰ (сумма углов треугольника равна 180⁰)
<ВАД=90⁰, <ВАР=30⁰, <РАС=30⁰ <ОАТ=90-(30+30)=30⁰, значит <РАТ=60⁹
Получили, треугольник АРТ - равносторонний, т.к. <P=<A=<t=60⁰
Значит, РТ=АР=АТ=8см, Р(АРСТ)=8*4=32(см)
ответ:32см
Формулировка теоремы косинусов
Для плоского треугольника со сторонами a,b,c и углом α, противолежащим стороне a, справедливо соотношение:
Квадрат одной стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного их произведения, умноженного на косинус угла между ними.
Доказательство теоремы косинусовРассмотрим произвольный треугольник ABC. Предположим, что нам известна величина стороны AC (она равна некому числу b), величина стороны AB (она равна некому числу c) и угол между этими сторонами, величина которого равна α. Найдем величину стороны BC (обозначив ее длину через переменную a)
Для доказательства теоремы косинусов проведем дополнительные построения. Из вершины C на сторону AB опустим высоту CD.
Найдем длину стороны AB. Как видно из рисунка, в результате дополнительного построения можно сказать, что
Найдем длину отрезка AD. Исходя из того, что треугольник ADC является прямоугольным, нам известны длина его гипотенузы (b) и угол (α) то величину стороны AD можно найти из соотношения его сторон, пользуясь свойствами тригонометрических функций в прямоугольном треугольнике:
откуда
Длину стороны BD найдем как разность AB и AD:
Теперь запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:
для треугольника BDC
для треугольника ADC
Обратим внимание на то, что оба треугольника имеют общую сторону - CD. Определим ее длину для каждого треугольника - вынесем ее значение в левую часть выражения, а остальное - в правую.
Поскольку левые части уравнений (квадрат стороны CD) равны, то приравняем правые части уравнений:
Исходя из сделанных ранее вычислений, мы уже знаем что:
AC = b (по условию)
А значение стороны BC обозначим как a.
BC = a
(Именно его нам и нужно найти)
Получим:
Заменим буквенные обозначения сторон на результаты наших вычислений
перенесем неизвестное значение (а) на левую сторону, а остальные части уравнения - на правую
раскроем скобки
получаем
Теорема косинусов доказана.
Случай, когда один из углов при основании тупой (и высота падает на продолжение основания), полностью аналогичен рассмотренному.