В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Оля142768
Оля142768
27.01.2023 02:17 •  Геометрия

В треугольнике ABC известно, что AB = 5, BC = 6, CA = 7. На сторонах AB,
ВС, СА взяты точки K, L, M так, что прямые KL, LM и МК перпендикулярны
соответственно биссектрисам углов ABC, BCA и CAB. На какие отрезки делят
точки K, Lи М стороны треугольника АВС?

Показать ответ
Ответ:
карина0212
карина0212
22.05.2020 14:51

Второй катет = 7,5 см

Объяснение:

Пусть дан ΔABC с прямым углом ∠С, тогда CH - высота, опущенная к гипотенузе, она равна 6 см. (по усл.), АС - катет, он равен 10 см. (по усл.), АВ - гипотенуза, ВС нам надо найти.

1) Рассмотрим ΔACH: он прямоугольный, (т.к CH⊥AB ⇒ образуются прямые углы ∠CHA и ∠CHB), АС - гипотенуза, равная 10 см., AH - катет, равный 8 см, тогда СH=6 см. (это можно найти, используя Т. Пифагора: AC²=AH²+CH² ⇒ CH=√AC²-AH² = √100см²-64см² = √36см² = 6 см., либо, используя "Египетский треугольник" со сторонами 3, 4, 5, где каждую из сторон увеличили в 2 раза ⇒ 6, 8, 10)

2) Рассмотри ΔABC: по Т. о высоте прямоугольного треугольника имеем, что высота, опущенная из прямого угла к гипотенузе, есть среднее геометрическое двух образованных ею сегментов гипотенузы. Значит, CH²=AH*HB ⇒ HB=CH²/AH = 36 см²/8 см = 4,5 см.

3) Рассмотрим ΔCHB: CH=6 см, HB=4,5 см, ВС - ?

По Т. Пифагора: BC²=CH²+HB²=36 см²+20,25 см²=56,25 см² ⇒ BC=√56,25см² = 7,5 см.

0,0(0 оценок)
Ответ:
koblina2015
koblina2015
04.08.2020 08:17
Правильная треугольная призма вписана в шар.
основания призмы вписаны в окружности - сечения шара плоскостями призмы. 
1. найдем радиус сечения. правильный треугольник со стороной а=2 вписан в окружность радиуса r. радиус описанной около правильного треугольника окружности: r=a/√3
r=2/√3.

2. рассмотрим прямоугольный треугольник:
катет - (1/2) высоты призмы - расстояние от центра шара до плоскости основания призмы, до центра правильного треугольника
катет  - радиус описанной около правильного треугольника окружности r=2/√3
гипотенуза - радиус шара R=7/√3
по теореме Пифагора: R²=r²+(H/2)²
(7/√3)²=(2/√3)²+H²/4
\frac{49}{3} - \frac{4}{3} = \frac{ H^{2} }{4}, \frac{45}{3} = \frac{ H^{2} }{4}

H²=60
H=2√15

Вшар вписана правильная треугольная призма, радиус шара корень из7/корень из 3, сторона основания 2.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота