В и С - точки касания прямых АВ и АС с окружностью (см.рис.3), О-центр окружности, К-точка пересечения отрезков АО и ВС. Найдите длину отрезка ВС, если АК=8, КО=2
∆АВК=∆АСК по 2 сторонам и углу между ними : АВ=АС и ∠ВАК=∠САК по свойству отрезков касательных, АК- общая. В равных треугольника соответственные элементы равны =>
1) ВК=КС
2) ∠АКВ=∠АКС, а тк они смежные, то ∠АКВ=∠АКС=90° => ВК⊥AО.
Т. к. ВО радиус, проведённый в точку касания , то ВО ⊥AВ ⇒ ∆АВО - прямоугольный.
Высота ВК, проведенная к гипотенузе, есть среднее пропорциональное между отрезками на которые она её делит : ВК=√(8*2) =4 ( ед).
Проведем ВО и СО.
∆АВК=∆АСК по 2 сторонам и углу между ними : АВ=АС и ∠ВАК=∠САК по свойству отрезков касательных, АК- общая. В равных треугольника соответственные элементы равны =>
1) ВК=КС
2) ∠АКВ=∠АКС, а тк они смежные, то ∠АКВ=∠АКС=90° => ВК⊥AО.
Т. к. ВО радиус, проведённый в точку касания , то ВО ⊥AВ ⇒ ∆АВО - прямоугольный.
Высота ВК, проведенная к гипотенузе, есть среднее пропорциональное между отрезками на которые она её делит : ВК=√(8*2) =4 ( ед).
Тк ВК=СК => ВС=2*4=8 (ед).