Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2-й признак подобия треугольников
( подобие треугольников по двум сторонам и углу между ними)
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны.
3-й признак подобия треугольников
( подобие треугольников по трём сторонам)
Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.
Есть еще 4-й признак подобия треугольников —
( подобие треугольников по двум сторонам и наибольшему углу)
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а наибольший угол одного равен наибольшему углу другого, то такие треугольники подобны.
Доказав, что треугольники подобны, можно использовать свойства подобных треугольников.
Для доказательства подобия прямоугольных треугольников используют другие признаки. Их мы запишем в следующий раз.
Подобие правильных и подобие равнобедренных треугольников рассмотрим позже.
Признаки подобия треугольников широко используются при решении задач как в курсе планиметрии, так и в курсе стереометрии. Например, на основании подобия прямоугольных треугольников доказывается свойство биссектрисы треугольника.
Дано:окр.с центром О, R=5см, АВ-хорда, АВ=6, М-середина АВ Найти: ОМ=? Решение: Так как АВ хорда, то точки А и В лежат на окружности. Проведу ОА и ОВ. Они являются радиусами одной окружности, значит ОА=ОВ=5см. Рассмотрю треугольник АОВ, он равнобедренный (так как АО=ОВ по доказанному) с основанием АВ. Проведу ОМ. Так как М - середина АВ, то ОМ - медиана, значит АМ=МВ=1/2АВ=1/2*6=3 см. А в равнобедренном треугольнике медиана, проведенная к основанию, является высотой. ОМ - высота, угол ОМА - прямой. рассмотрю треугольник ОМА, он прямоугольный (так как угол ОМА - прямой). По теореме Пифагора найду ОМ: ОМ²=ОА²-АМ²= 5²-3²=25-9=16 ОМ=4см ответ: ОМ= 4
1-й признак подобия треугольников
( подобие треугольников по двум углам)
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2-й признак подобия треугольников
( подобие треугольников по двум сторонам и углу между ними)
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны.
3-й признак подобия треугольников
( подобие треугольников по трём сторонам)
Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.
Есть еще 4-й признак подобия треугольников —
( подобие треугольников по двум сторонам и наибольшему углу)
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а наибольший угол одного равен наибольшему углу другого, то такие треугольники подобны.
Доказав, что треугольники подобны, можно использовать свойства подобных треугольников.
Для доказательства подобия прямоугольных треугольников используют другие признаки. Их мы запишем в следующий раз.
Подобие правильных и подобие равнобедренных треугольников рассмотрим позже.
Признаки подобия треугольников широко используются при решении задач как в курсе планиметрии, так и в курсе стереометрии. Например, на основании подобия прямоугольных треугольников доказывается свойство биссектрисы треугольника.
Найти: ОМ=?
Решение:
Так как АВ хорда, то точки А и В лежат на окружности. Проведу ОА и ОВ. Они являются радиусами одной окружности, значит ОА=ОВ=5см. Рассмотрю треугольник АОВ, он равнобедренный (так как АО=ОВ по доказанному) с основанием АВ. Проведу ОМ. Так как М - середина АВ, то ОМ - медиана, значит АМ=МВ=1/2АВ=1/2*6=3 см. А в равнобедренном треугольнике медиана, проведенная к основанию, является высотой. ОМ - высота, угол ОМА - прямой.
рассмотрю треугольник ОМА, он прямоугольный (так как угол ОМА - прямой). По теореме Пифагора найду ОМ:
ОМ²=ОА²-АМ²= 5²-3²=25-9=16
ОМ=4см
ответ: ОМ= 4