Решение: 1)Рассмотрим равносторонний треугольник ABC со сторонами, равными a. Проведем высоту BH. Эта высота будет являться одновременно и медианой, и высотой (из свойств равнобедренного треугольника. Они справедливы и для равностороннего). Мы получим два равных прямоугольных треугольников (по трем сторонам). Чтобы найти BH, воспользуемся теоремой Пифагора. BH = sqrt(a^2-(a/2)^2)=sqrt(3a^2/4)=a*sqrt(3)/2 А далее воспользуемся формулой нахождения площади треугольника: оно равно полупроизведению основания на высоту. Высоту знаем, основание дано по условию. Вот и пишем: S = 1/2*a*a*sqrt(3)/2=a^2*sqrt(3)/4, что и требовалось доказать. 2) Вместо a подставляем 5: S = 25*sqrt(3)/4 S = 6.25*sqrt(3) см^2 ответ: 6.25*sqrt(3) см^2 P.S. извиняйте, что чертежа нет, ибо в ответе я почему-то не могу прикрепить вложения. sqrt() - корень квадратный.
По свойствам параллелограмма противоположные стороны равны, значит bc=ad=9 известно соотношение отрезков ak относится к kd как 2 части стороны ad к 1 части, т.е. частей всего 3. Получается что ak=9/3*2=6, а kd=3
Согласно свойствам биссектрисы параллелограмма, биссектриса отсекает равнобедренный треугольник, в нашем случае, это треугольник abk. А поскольку боковые стороны равнобедренного треугольника равны получаем, что ak=ab=6
Формула периметра параллелограмма: P=2(a+b), где a и b - стороны, подставим наши значения получим: P=2(6+9) P=2*15 P=30
известно соотношение отрезков ak относится к kd как 2 части стороны ad к 1 части, т.е. частей всего 3. Получается что ak=9/3*2=6, а kd=3
Согласно свойствам биссектрисы параллелограмма, биссектриса отсекает равнобедренный треугольник, в нашем случае, это треугольник abk. А поскольку боковые стороны равнобедренного треугольника равны получаем, что ak=ab=6
Формула периметра параллелограмма: P=2(a+b), где a и b - стороны, подставим наши значения получим:
P=2(6+9)
P=2*15
P=30