В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
natik49
natik49
26.02.2023 22:02 •  Геометрия

Установите соответствие между векторами и утверждениями 1) a(7; -2; 3) и b(0; -3; -1) 2) c(-5; 2; 4) и d(2; -1; 3) 3) m(1; 2; -2) и n(0; 0; 3) 4) p(2; -3; 5) и k(-6; 9; -15) а) векторы перпендикулярны б) векторы коллинеарны в) векторы имеют равные длины г) сумма векторов (7; -5; 2) д) векторы равны

Показать ответ
Ответ:
лерка210198
лерка210198
09.03.2022 21:43

Задачу можно очень сильно упростить. Точка К - центр грани А1B1C1D1 - принадлежит прямым B1D1 и A1C1, то есть - обеим плоскостям. Точно так же центр грани ABB1A1 - точка М принадлежит A1B и B1A, то есть опять таки обеим плоскостям. Таким образом КМ - линия пересечения плоскостей. 

Треугольники А1КМ и В1КМ - равносторонние. Если считать, что их сторона равна 1, то ребро куба равно √2, а высота треугольника А1КМ (и В1КМ - тоже) равна √3/2;

То есть если обозначить косинус угла между перпендикулярами к КМ из точек A1 и В1 как х, то по теореме косинусов

(√2)^2 = (√3/2)^2 + (√3/2)^2 - 2*(√3/2)*(√3/2)*x; x = -1/3; Конечно, знак тут никакой роли не играет, просто выбранный для вычисления треугольник - тупоугольный. Дополнительный к нему угол имеет косинус 1/3; это просто вопрос выбора.

 

На самом деле, самое простое решение этой задачи получается, если применить координатный метод. Пусть Р - середина А1В1. Пусть начало координат лежит в ней, ось Z проходит через точку М, Х - через точку К, Y - через точки А1 и В1.

Здесь я принимаю ребро куба равным 2, то есть РА1 = РВ1 = РК = РМ = 1; 

Плоскость ВА1С1 - то есть плоскость А1КМ проходит через точки К = (1,0,0);  А1 = (0,-1,0); М = (0,0,-1); 

уравнение такой плоскости x - y - z = 1; (можете проверить, что все три точки удовлетворяют этому уравнению)

Отсюда нормальный вектор к этой плоскости q = (1,-1,-1);

модуль этого вектора равен √3

Плоскость АВ1С1 - то есть плоскость В1КМ проходит через точки К = (1,0,0);  В1 = (0,1,0); М = (0,0,-1); 

уравнение такой плоскости x + y - z = 1;

Отсюда нормальный вектор к этой плоскости l = (1, 1,-1);

модуль этого вектора тоже равен √3;

осталось вычислить угол между нормальными векторами (равный, очевидно, углу между плоскостями), для чего надо их скалярно перемножить и разделить на модули. Скалярное произведение равно ql = 1 - 1 + 1 = 1; а произведение модулей равно 3, откуда косинус угла равен 1/3.

Видно, что тут ответ получается сам собой. Но большое преимущество такого метода в том, что им легко получать углы между плоскостями и в более сложных случаях, когда применение простых геометрических методов затруднительно.

0,0(0 оценок)
Ответ:
Коsмoc
Коsмoc
31.12.2021 15:23

Я в другом месте Вам выложил векторное решение, а тут - простое и элементарное:)

При повороте на 90 градусов вокруг общей для двух квадратов вершины В стороны квадратов переходят "в себя" - точнее, сторона ВС переходит в ВР, а сторона МВ - в АВ. Или, что то же самое - точка С переходит в Р, а точка М - в А.

Удивительным образом отсюда сразу следует ответ :)

В самом деле, получается, что в четырехугольнике АМРС про повороте на 90 градусов диагональ МС переходит в диагональ АР.  То есть они равны и перпендикулярны :)

А стороны искомой фигуры соединяют середины соседних сторон четырехугольника АМРС, поэтому равны половинам диагоналей и параллельны им (например, О1К - средняя линяя в треугольнике АМС, поэтому она параллельна МС и равна её половине, и так все 4 стороны четырехугольника О1LO2K).

Поэтому четырехугольник О1LO2K - квадрат :)

 

У Прасолова в его сложнейшем задачнике эта задача помечена * (особой сложности :)) У него приведено векторное решение, похожее на которое (более понятное) я выложил тут в другом месте. Но это решение, по-моему, снимает все вопросы.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота