Укажите номера верных утверждений, а неверные объясните почему: 1) в треугольнике со сторонами 5 см, 7 см и 8 см напротив стороны в 7 см может лежать угол равный 97°. 2) если в прямоугольном треугольнике один из острых углов равен 45°, то данный треугольник равнобедренный. 3) треугольник с углами 56°, 56° и 68° равнобедренный. 4) сумма длин двух сторон треугольника может быть равна третьей стороне
По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника.
Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.
2) Так как CED - равнобедренный, то ∠ECD = ∠EDC =>
∠ECM = ∠MCD = ∠EDH = ∠HDC
Тогда ΔHDC = ΔMCD по стороне и двум углам:
(CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC)
Отсюда следует, что HC = MD.
В ΔСАН и ΔMAD: HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC =>
эти треугольники равны по стороне и двум углам
205: Дано:
прямоугольный треугольник АВС,
угол С = 90 градусов,
АС : ВС = 12 : 5,
АВ = 39 сантиметров.
Найти катеты АС, ВС — ?
Рассмотрим прямоугольный треугольник АВС. Пусть длина катета АС = 12 * х сантиметров, а длина катета ВС = 5 * х сантиметров. Тогда по теореме Пифагора (квадрат гипотенузы равен сумме квадратов катетов):
АС^2 + ВС^2 = АВ^2:
(12х)^2 + (5х)^2 = 39^2;
144х^2 + 25 х^2 =1 521;
169х^2 = 1 521;
х^2 = 1 521 : 169;
х^2 = 9;
х = 3;
12 * 3 = 36 сантиметров — длина катета АС;
5 * 3 = 15 сантиметров — длина катета ВС.
ответ: 36 сантиметров; 15 сантиметров.
206: пусть х - первый катет, а y - второй:
y^2-17y+60=0
D=289-240=
y1=12
y2=5
найдем x:
x=17-y
x-17-12 x=17-5
х = 5 x=12
ответ: (5;12), (12;5)
Подробнее - на -