Около окружности можно описать трапецию тогда и только тогда, когда равны суммы ее противоположных сторон. Следовательно, сумма оснований равна сумме боковых сторон и равна полупериметру трапеции.
Сумма оснований равна 100:2=50 см
Трапеция равнобокая, и каждая боковая сторона равна 50:2=25 см Площадь трапеции равна произведению ее высоты на полусумму оснований.
Высота трапеции равна диаметру окружности, вокруг которой она описана, и равна r·2=12·2=24cм. S=24·50:2=600 см²
Теперь найдем основания. Проведем из вершины тупого угла высоту к большему основанию.
Высота отсекает от него отрезок, равный полуразности оснований. Обозначим его х. Из прямоугольного треугольника, в котором боковая сторона трапеции - гипотенуза, а катеты - высота и отрезок х, найдем х. х=√(25²-24²)=√49=7 см Так как х- это полуразность оснований, то полная разность 7·2=14 см. Сумма оснований 50. Пусть меньшее из них будет у, тогда большее у+14 у+у+14=50 2у=36 у=18 - это меньшее основание. 18+14=32 - это большее основание. ответ: Меньшее основание =18 см Большее основание =32 см Площадь трапеции =600 см
ответ: 150º
Объяснение:
Отрезки ОА и ОВ - радиусы окружности. Расстояние от точки А до прямой ОВ в два раза меньше радиуса. Найдите дугу АВ.
Вариант а) рис.1
Точка А расположена в той же четверти окружности, что В.
Расстояние от точки до прямой - перпендикуляр. Пусть это перпендикуляр АС.
В прямоугольном треугольнике АОС отрезок АС=0,5 АО. Синус угла АОС=АС:АО=0,5. Это синус угла 30º
Центральный угол окружности равен угловой величине дуги, на которую он опирается. ⇒ дуга АВ=30º
Вариант б) рис.2
Точка А расположена по другую сторону от центра, чем В.
Тогда точно так же найдем величину угла между радиусом ОА и прямой ОВ. Дуга АВ в этом случае равна разности межу развернутым углом ВОС и углом АОС.
дуга АВ=180º-30º=150º
Около окружности можно описать трапецию тогда и только тогда, когда равны суммы ее противоположных сторон.
Следовательно, сумма оснований равна сумме боковых сторон и равна полупериметру трапеции.
Сумма оснований равна 100:2=50 см
Трапеция равнобокая, и каждая боковая сторона равна
50:2=25 см
Площадь трапеции равна произведению ее высоты на полусумму оснований.
Высота трапеции равна диаметру окружности, вокруг которой она описана, и равна r·2=12·2=24cм.
S=24·50:2=600 см²
Теперь найдем основания.
Проведем из вершины тупого угла высоту к большему основанию.
Высота отсекает от него отрезок, равный полуразности оснований. Обозначим его х.
Из прямоугольного треугольника, в котором боковая сторона трапеции - гипотенуза, а катеты - высота и отрезок х, найдем х.
х=√(25²-24²)=√49=7 см
Так как х- это полуразность оснований, то полная разность 7·2=14 см.
Сумма оснований 50. Пусть меньшее из них будет у, тогда большее у+14
у+у+14=50
2у=36
у=18 - это меньшее основание.
18+14=32 - это большее основание.
ответ:
Меньшее основание =18 см
Большее основание =32 см
Площадь трапеции =600 см