Вспоминаем свойство диагоналей прямоугольника: Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам. Значит ΔАОД и ΔВОА - равнобедренные, и ∠ОВА=∠ОАВ, ∠ОАД=∠ОДА=90°-50°=40° АЕ=ЕВ, т. к. по условию Е - середина АВ. То есть в ΔВОА ОЕ - медиана. Далее вспоминаем следующее свойство равнобедренного треугольника: Биссектриса, медиана и высота, проведённые к основанию, совпадают между собой. Таким образом ОЕ⊥АВ и ДА⊥АВ, то есть ДА параллельна ОЕ, ∠ОДА+∠ЕОД=180°, как сумма односторонних углов, значит: ∠ЕОД=180°-40°=140°
...Ну и как "Лучшее решение" не забудь отметить, ОК?!.. ;)
Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам.
Значит ΔАОД и ΔВОА - равнобедренные, и
∠ОВА=∠ОАВ, ∠ОАД=∠ОДА=90°-50°=40°
АЕ=ЕВ, т. к. по условию Е - середина АВ.
То есть в ΔВОА ОЕ - медиана.
Далее вспоминаем следующее свойство равнобедренного треугольника:
Биссектриса, медиана и высота, проведённые к основанию, совпадают между собой.
Таким образом ОЕ⊥АВ и ДА⊥АВ, то есть ДА параллельна ОЕ, ∠ОДА+∠ЕОД=180°, как сумма односторонних углов, значит:
∠ЕОД=180°-40°=140°
...Ну и как "Лучшее решение" не забудь отметить, ОК?!.. ;)
Объяснение:
1) Т. к. AB = BC, то треуг. ABC - р/б.
Т. к. треуг. ABC - р/б, то угол BCA = углу BAC = 50°
угол ABC = 180° - ∠BAC - ∠BCA = 180° - 50° - 50° = 80°
Т. к. ΔABC - р/б, то BM - биссектриса.
Т. к. BM - биссектриса, то ∠CBM = ∠ABC / 2 = 80° / 2 = 40°
ответ: 40°
3) ∠BCA = 180° - ∠BCD = 180° - 125° = 55°
Т. к. AB = BC, то ΔABC - р/б
Т. к. ΔABC - р/б, то ∠BAC = ∠BCA = 55°
∠ABC = 180° - ∠BAC - ∠BCA = 180° - 55° - 55° = 70°
ответ: 55°; 70°; 55°
4) ∠ABC = 180° - ∠DBC = 180° - 120° = 60°
∠ACB = 180° - ∠ECB = 180° - 110° = 70°
∠BAC = 180° - ∠ABC - ∠ACB = 180° - 60° - 70° = 50°
ответ: 50°; 60°; 70°
5) ∠BAC = ∠1 = 40°, как смежные
∠BCA = 180° - ∠2 = 180° - 85° = 95°
∠ABC = 180° - ∠BAC - ∠BCA = 180° - 40° - 95° = 45°
ответ: 40°; 45°; 95°