У правильній чотирикутній піраміді двогранний кут при основі дорівнює а знайдіть площу бічної поверхні піраміди якщо радіус вписаної в неї кулі дорівнює r
Угол между образующей конуса и плоскостью основания равен углу между образующей и радиусом основания, проведенного к данной образующей. Площадь боковой поверхности конуса: pi*R*l, площадь основания - pi*R^2. Поскольку площадь боковой поверхности в два раза больше площади основания, то pi*R*l = 2*pi*R^2. упрощаем уравнение: l = 2R. Из рисунка CB = 2OB. Из прямоугольного треугольника COB: угол, который лежит против катета, который в два раза меньше гипотенузы, равен 30 градусов. OB - катет, CB - гипотенуза, следовательно, угол BOC = 30 градусов. Искомый угол CBO = 90 - 30 = 60 градусов.
Середина боковой стороны лежит на средней линии треугольника, параллельной основанию. вершина треугольника удалена от основания в два раза дальше, чем средняя линия, значит высота, опушенная на основания h=2·9=18 см. высота, проведённая к основанию равнобедренного треугольника, является его медианой, значит точка пересечения медиан лежит на высоте треугольника. точка пересечения медиан делит каждую медиану на отрезки в отношении 2: 1 считая от вершины, значит искомое расстояние - это треть от всей высоты, то есть 18/3=6 см - это ответ.