У циліндрі паралельно до його осі проведено площину, яка перетинає основу по хорді, яку видно з центра цієї основи під кутом 120° Діагональ утвореного перерізу дорівнює 3 см і утворює 3 площиною основи кут 30°. Знайдіть радіус основи циліндра. Очень
Тогда <CBE = <ABE = 30°, так как ВЕ - биссектриса. В прямоугольном треугольнике ВЕС катет ВЕ лежит против угла 30° и равен половине гипотенузы (свойство).
СЕ = ВЕ:2 = 6:2 = 3см.
Треугольник ВЕА равнобедренный,так как углы АВЕ и ЕАВ равны по 30°. Следовательно, АЕ = ВЕ =6см и АС = СЕ+АЕ = 9см.
Угол ВЕА в этом треугольнике равен 120° по сумме внутренних углов треугольника, равной 180°.
Не верно, половине произведения его основания на высоту.
2. Гипотенуза равна сумме квадратов катетов.
Не верно: квадрат гипотенузы равен сумме квадратов катетов.
3. Если 2 угла одного треугольника равны 2-ум углам другого треугольника, то эти треугольники подобны.
Верно.
4. Диагонали ромба точкой пересечения делятся пополам.
Верно.
5. Площадь квадрата равна квадрату его диагонали.
Не верно, половине квадрата его диагонали.
6. Площадь трапеции равна произведению ее средней линии на высоту.
Верно.
7. Сумма углов треугольника равна 360°
Не верно. 180°.
8. Катет всегда больше гипотенузы.
Не верно. Гипотенуза всегда больше катета.
9. Все равнобедренные треугольники равны.
Не верно.
10. Все углы правильного шестиугольника равны 135°.
Не верно. 120°.
Угол АВС прямоугольного треугольника АВС равен 60° по сумме острых углов прямоугольного треугольника, равной 90°.
Тогда <CBE = <ABE = 30°, так как ВЕ - биссектриса. В прямоугольном треугольнике ВЕС катет ВЕ лежит против угла 30° и равен половине гипотенузы (свойство).
СЕ = ВЕ:2 = 6:2 = 3см.
Треугольник ВЕА равнобедренный,так как углы АВЕ и ЕАВ равны по 30°. Следовательно, АЕ = ВЕ =6см и АС = СЕ+АЕ = 9см.
Угол ВЕА в этом треугольнике равен 120° по сумме внутренних углов треугольника, равной 180°.
ответ: СЕ = 3см, АС = 9см, <BEA = 120°.