Три стороны вписанного четырёхугольника равны 4, 3 и 5. Найдите ещё одну сторону этого четырёхугольника, если его диагональ, показанная на рисунке, делит другую диагональ пополам.
Это как бы достаточно классическая задача. А такая пирамида называется тетраэдр. Правильная пирамида. Очень правильная.
Назови вершины банальными буквами ABCD. Далее надо заметить, что отрезок, являющийся расстоянием между двумя противоположными рёбрами (длину которого мы ищем, назовём его банальной букой х), лежит в плоскости, содержащей одно из рёбер, и точку середины противоположного ребра. Точнее даже, этот самый отрезок является высотой равнобедренного треугольника, образованного одним из рёбер, и высотами двух соседних граней. Чему равна высота в равностороннем треугольнике со стороной а? Стандартная формула: а * корень(3) / 2. Итак, что мы имеем: необходимо найти высоту равнобедренного треугольника, в основании которого лежит ребро а, а обе боковые стороны равны, как только что нашли, а * корень(3) / 2. Теорема Пифагора нам тут имеем: х = корень ( (а*корень(3)/2 ) в квадрате - (1/2а) в квадрате); х = а * корень ( 2) / 2.
Дано: δ авс ∠с = 90° ак - биссектр. ак = 18 см км = 9 см найти: ∠акв решение. т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) к на гипотенузу ав и обозначим это расстояние км. рассмотрим полученный δ акм, т.к. ∠амк = 90°,то ак гипотенуза, а км - катет. поскольку, исходя из условия, катет км = 9/18 = 1/2 ак, то ∠кам = 30°. т.к. по условию ак - биссектриса, то ∠сак =∠кам = 30° рассмотрим δакс. по условию ∠аск = 90°; а∠сак = 30°, значит, ∠акс = 180° - 90° - 30° = 60° искомый ∠акв - смежный с ∠акс, значит, ∠акв = 180° - ∠акс = 180° - 60° = 120° ответ: 120° подробнее - на -
Назови вершины банальными буквами ABCD.
Далее надо заметить, что отрезок, являющийся расстоянием между двумя противоположными рёбрами (длину которого мы ищем, назовём его банальной букой х), лежит в плоскости, содержащей одно из рёбер, и точку середины противоположного ребра. Точнее даже, этот самый отрезок является высотой равнобедренного треугольника, образованного одним из рёбер, и высотами двух соседних граней.
Чему равна высота в равностороннем треугольнике со стороной а? Стандартная формула: а * корень(3) / 2.
Итак, что мы имеем: необходимо найти высоту равнобедренного треугольника, в основании которого лежит ребро а, а обе боковые стороны равны, как только что нашли, а * корень(3) / 2.
Теорема Пифагора нам тут имеем:
х = корень ( (а*корень(3)/2 ) в квадрате - (1/2а) в квадрате);
х = а * корень ( 2) / 2.
Такой получается ответ.