Трапеция abcd вписана в окружность. хорда вр пересекает под прямым углом основание ad в точке м, причём ам = 2, мр = 4. найдите площадь трапеции, если её средняя линия равна 18.
Поскольку трапеция вписана в окружность, она равнобедренная, поэтому если наряду с высотой BM провести высоту CN, то ND=AM=2, а тогда полусумма оснований (равная средней линии) равна BC+2⇒BC=MN=16⇒MD=18. Теперь легко найти высоту трапеции: AM·MD=BM·MP⇒BM=(2·18)/4=9⇒ площадь может быть вычислена по формуле полусумма оснований, умноженная на высоту:
AM·MD=BM·MP⇒BM=(2·18)/4=9⇒ площадь может быть вычислена по формуле полусумма оснований, умноженная на высоту:
S=18·9=162
ответ: 162