Точки Е и F лежат на сторонах BC и CD соответственно, причём BE/EC=DF/FC=1/2. Отрезки AE и BF пересекаются в точке K. Найти отношение площади четырёхугольника CEKF к площади треугольника AFK.
Если провести сечение пирамиды через ее высоту перпендикулярно боковой грани, то получится прямоугольный треугольник CNK, где CN - высота пирамиды - один из катетов треугольника, NK - второй катет (след сечения основания пирамиды, N - прямой угол, K - угол равный 60 градусам (из условия), CK - гипотенуза (высота боковой грани пирамиды).
Центр O вписанного в пирамиду шара лежит на CN так, что ON равно его радиусу. Из точки O проведем перпендикуляр на гипотенузу до точки M. OM также должен быть равен радиусу шара. Рассматривая это построение, нетрудно показать, что точка O делит высоту CN в отношении 1:2. Таким образом радиус вписанного шара равен 3 (9/3).
Объем шара (4/3)*π*3*3*3 = π*36 или примерно 3.14*36 = 113
Если провести сечение пирамиды через ее высоту перпендикулярно боковой грани, то получится прямоугольный треугольник CNK, где CN - высота пирамиды - один из катетов треугольника, NK - второй катет (след сечения основания пирамиды, N - прямой угол, K - угол равный 60 градусам (из условия), CK - гипотенуза (высота боковой грани пирамиды).
Центр O вписанного в пирамиду шара лежит на CN так, что ON равно его радиусу. Из точки O проведем перпендикуляр на гипотенузу до точки M. OM также должен быть равен радиусу шара. Рассматривая это построение, нетрудно показать, что точка O делит высоту CN в отношении 1:2. Таким образом радиус вписанного шара равен 3 (9/3).
Объем шара (4/3)*π*3*3*3 = π*36 или примерно 3.14*36 = 113
7 см
Объяснение:
В любом треугольнике одна из сторон всегда меньше суммы двух других сторон.
1) Пусть основание АС треугольника АВС равно 7 см, а боковые стороны АВ = ВС = 3 см.
Проверим, существует такой треугольник или нет:
АВ + ВС = 3 + 3 = 6 см
Так как сумма длин двух сторон АВ и ВС меньше длины третьей стороны (6<7), то такой треугольник не существует.
2) Пусть основание АС треугольника АВС равно 3 см, а боковые стороны АВ = ВС = 7 см.
Проверим, существует такой треугольник или нет:
АВ + ВС = 7 + 7 = 14 см
Так как сумма длин двух сторон АВ и ВС больше длины третьей стороны (14>3), то такой треугольник существует.
Значит, третья сторона данного равнобедренного треугольника равна 7 см.
ответ: 7 см