Точка С является проэкцией точки А (3;-2)в результате двух последовательно выполненных перемещений:1).симметрии относительно начала координат, 2).симметрии относительно оси абцисс. Укажите координаты точки С
Биссектриса угла В и биссектриса внешнего угла D прямоугольника ABCD пересекают сторону AD и прямую АВ в точках М и К соответственно. Докажите, что отрезок МК равен и перпендикулярен диагонали прямоугольника.
2. В равнобедренном треугольнике АВС на боковой стороне ВС отмечена точка М так, что отрезок СМ равен высоте треугольника, проведенной к этой стороне, а на боковой стороне АВ отмечена точка К так, что угол КМС – прямой. Найдите угол АСК.
3. Из листа бумаги в клетку вырезали квадрат 2×2. Используя только линейку без делений и не выходя за пределы квадрата, разделите диагональ квадрата на 6 равных частей.
4. В трапеции ABCD: AB = BC = CD, CH – высота. Докажите, что перпендикуляр, опущенный из Н на АС, проходит через середину BD.
5. Пусть AA1 и BB1 – высоты неравнобедренного остроугольного треугольника АВС, М – середина АВ. Окружности, описанные около треугольников AMA1 и BMB1 пересекают прямые АС и ВС в точках К и L соответственно. Докажите, что К, М и L лежат на одной прямой.
6. Один треугольник лежит внутри другого. Докажите, что хотя бы одна из двух наименьших сторон (из шести) является стороной внутреннего треугольника.
10–11 класс
1. AD и BE – высоты треугольника АВС. Оказалось, что точка C', симметричная вершине С относительно середины отрезка DE, лежит на стороне AB. Докажите, что АВ – касательная к окружности, описанной около треугольника DEC'.
2. Прямая а пересекает плоскость α. Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от а и не пересекающих a. Верно ли, что а перпендикулярна α?
3. Дана неравнобокая трапеция ABCD (AB||CD). Произвольная окружность, проходящая через точки А и В, пересекает боковые стороны трапеции в точках P и Q, а диагонали – в точках M и N. Докажите, что прямые PQ, MN и CD пересекаются в одной точке.
4. Докажите, что любой жесткий плоский треугольник T площади меньше четырёх можно просунуть сквозь треугольную дырку Q площади 3.
5. В выпуклом четырехугольнике ABCD: AC ⊥ BD, ∠BCA = 10°, ∠BDA = 20°, ∠BAC = 40°. Найдите ∠BDC. (ответ выразите в градусах.)
6. Пусть AA1, BB1 и CC1 – высоты неравнобедренного остроугольного треугольника АВС; окружности, описанные около треугольников АВС и A1B1C, вторично пересекаются в точке Р, Z – точка пересечения касательных к описанной окружности треугольника АВС, проведённых в точках А и В. Докажите, что прямые АР, ВС и ZC1 пересекаются в одной точке.
Для этого надо составить уравнения сторон в виде у = кх + в. У параллельных прямых коэффициенты "к" равны. Сторона АВ: Уравнение прямой: Будем искать уравнение в виде y = k · x + b . В этом уравнении: k - угловой коэффициент прямой (k = tg(φ), φ - угол, который образует данная прямая с положительным направлением оси OX); b - y-координата точки (0; b), в которой искомая прямая пересекает ось OY. k = (yB - yA) / (xB - xA) = (2 - (-6)) / (4 - (2)) = 4; b = yB - k · xB = 2 - (4) · (4) = yA - k · xA = -6 - (4) · (2) = -14 . Искомое уравнение: y = 4 · x - 14 .
Сторона ВС: k = (yB - yA) / (xB - xA) = (5 - (2)) / (-2 - (4)) = -0.5; b = yB - k · xB = 5 - (-0.5) · (-2) = yA - k · xA = 2 - (-0.5) · (4) = 4 . Искомое уравнение: y = -0.5 · x + 4 .
Сторона СД: k = (yB - yA) / (xB - xA) = (1 - (5)) / (-3 - (-2)) = 4; b = yB - k · xB = 1 - (4) · (-3) = yA - k · xA = 5 - (4) · (-2) = 13 . Искомое уравнение: y = 4 · x + 13 .
Сторона АД: k = (yB - yA) / (xB - xA) = (1 - (-6)) / (-3 - (2)) = -1.4; b = yB - k · xB = 1 - (-1.4) · (-3) = yA - k · xA = -6 - (-1.4) · (2) = -3.2 . Искомое уравнение: y = -1.4 · x - 3.2 .
Уравнения сторон АВ и СД имеют одинаковые коэффициенты "к", поэтому заданный четырёхугольник - трапеция.
Объяснение:
Биссектриса угла В и биссектриса внешнего угла D прямоугольника ABCD пересекают сторону AD и прямую АВ в точках М и К соответственно. Докажите, что отрезок МК равен и перпендикулярен диагонали прямоугольника.
2. В равнобедренном треугольнике АВС на боковой стороне ВС отмечена точка М так, что отрезок СМ равен высоте треугольника, проведенной к этой стороне, а на боковой стороне АВ отмечена точка К так, что угол КМС – прямой. Найдите угол АСК.
3. Из листа бумаги в клетку вырезали квадрат 2×2. Используя только линейку без делений и не выходя за пределы квадрата, разделите диагональ квадрата на 6 равных частей.
4. В трапеции ABCD: AB = BC = CD, CH – высота. Докажите, что перпендикуляр, опущенный из Н на АС, проходит через середину BD.
5. Пусть AA1 и BB1 – высоты неравнобедренного остроугольного треугольника АВС, М – середина АВ. Окружности, описанные около треугольников AMA1 и BMB1 пересекают прямые АС и ВС в точках К и L соответственно. Докажите, что К, М и L лежат на одной прямой.
6. Один треугольник лежит внутри другого. Докажите, что хотя бы одна из двух наименьших сторон (из шести) является стороной внутреннего треугольника.
10–11 класс
1. AD и BE – высоты треугольника АВС. Оказалось, что точка C', симметричная вершине С относительно середины отрезка DE, лежит на стороне AB. Докажите, что АВ – касательная к окружности, описанной около треугольника DEC'.
2. Прямая а пересекает плоскость α. Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от а и не пересекающих a. Верно ли, что а перпендикулярна α?
3. Дана неравнобокая трапеция ABCD (AB||CD). Произвольная окружность, проходящая через точки А и В, пересекает боковые стороны трапеции в точках P и Q, а диагонали – в точках M и N. Докажите, что прямые PQ, MN и CD пересекаются в одной точке.
4. Докажите, что любой жесткий плоский треугольник T площади меньше четырёх можно просунуть сквозь треугольную дырку Q площади 3.
5. В выпуклом четырехугольнике ABCD: AC ⊥ BD, ∠BCA = 10°, ∠BDA = 20°, ∠BAC = 40°. Найдите ∠BDC. (ответ выразите в градусах.)
6. Пусть AA1, BB1 и CC1 – высоты неравнобедренного остроугольного треугольника АВС; окружности, описанные около треугольников АВС и A1B1C, вторично пересекаются в точке Р, Z – точка пересечения касательных к описанной окружности треугольника АВС, проведённых в точках А и В. Докажите, что прямые АР, ВС и ZC1 пересекаются в одной точке.
У параллельных прямых коэффициенты "к" равны.
Сторона АВ:
Уравнение прямой:
Будем искать уравнение в виде y = k · x + b .
В этом уравнении:
k - угловой коэффициент прямой (k = tg(φ), φ - угол, который образует данная прямая с положительным направлением оси OX);
b - y-координата точки (0; b), в которой искомая прямая пересекает ось OY.
k = (yB - yA) / (xB - xA) = (2 - (-6)) / (4 - (2)) = 4;
b = yB - k · xB = 2 - (4) · (4) = yA - k · xA = -6 - (4) · (2) = -14 .
Искомое уравнение: y = 4 · x - 14 .
Сторона ВС:
k = (yB - yA) / (xB - xA) = (5 - (2)) / (-2 - (4)) = -0.5;
b = yB - k · xB = 5 - (-0.5) · (-2) = yA - k · xA = 2 - (-0.5) · (4) = 4 .
Искомое уравнение: y = -0.5 · x + 4 .
Сторона СД:
k = (yB - yA) / (xB - xA) = (1 - (5)) / (-3 - (-2)) = 4;
b = yB - k · xB = 1 - (4) · (-3) = yA - k · xA = 5 - (4) · (-2) = 13 .
Искомое уравнение: y = 4 · x + 13 .
Сторона АД:
k = (yB - yA) / (xB - xA) = (1 - (-6)) / (-3 - (2)) = -1.4;
b = yB - k · xB = 1 - (-1.4) · (-3) = yA - k · xA = -6 - (-1.4) · (2) = -3.2 .
Искомое уравнение: y = -1.4 · x - 3.2 .
Уравнения сторон АВ и СД имеют одинаковые коэффициенты "к", поэтому заданный четырёхугольник - трапеция.