Точка пересечения диагоналей параллелограмма удалена от одной из его вершин на 7 см, а от другой - на 5 см. Какова длина диагоналей параллелограмма? ответ дайте через запятую, без единиц измерения
AO - радиус окружности, описанной вокруг основания правильной треугольной пирамиды
SKO - двугранный угол между основанием и гранью пирамиды (в правильной пирамиде они равны)
Важно. В правильной треугольной пирамиде длина ребра (на рисунке AS, BS, CS ) может быть не равна длине стороны основания (на рисунке AB, AC, BC). Если длина ребра правильной треугольной пирамиды равна длине стороны основания, то такая пирамида называется тетраэдром (см. ниже).
Свойства правильной треугольной пирамиды:
боковые ребра правильной пирамиды равны
все боковые грани правильной пирамиды являются равнобедренными треугольниками
в правильную треугольную пирамиду можно как вписать, так и описать вокруг неё сферу
если центры вписанной и описанной вокруг правильной треугольной пирамиды, сферы совпадают, то сумма плоских углов при вершине пирамиды равна π (180 градусов) , а каждый из них соответственно равен π / 3 (пи делить на 3 или 60 градусов ).
площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
вершина пирамиды проецируется на основание в центр правильного равностороннего треугольника,, который является центром вписанной окружности и точкой пересечения медиан
И. п семь тысяч семьсот семьдесят седьмая страница
Р. п семь тысяч семьсот семьдесят седьмой страницы
Д. п семь тысяч семьсот семьдесят седьмой странице
В. п семь тысяч семьсот семьдесят седьмую страницу
Т. п семь тысяч семьсот семьдесят седьмой страницей
П. п о семь тысяч семьсот семьдесят седьмой странице
И. п. пять десятых грамма
р. п пять десятых грамма
Д. п пять десятому грамму
в. п пять десятых грамма
т. п пять десятыми граммами
п. п о пять десятых грамма
и. п. сто друзей
р. п ста друзей
Д. п ста друзьям
в. п сто друзей
т. п ста друзьями
п. п о ста друзьях
и. п. сорок восемь городов
р. п сорока восьми городов
Д. п. сорока восьми городам
в. п. сорок восемь городов
т. п. сорока восьми городами
п. п о сорока восьми городов
На рисунке обозначены:
ABC - Основание пирамиды
OS - Высота
KS - Апофема
OK - радиус окружности, вписанной в основание
AO - радиус окружности, описанной вокруг основания правильной треугольной пирамиды
SKO - двугранный угол между основанием и гранью пирамиды (в правильной пирамиде они равны)
Важно. В правильной треугольной пирамиде длина ребра (на рисунке AS, BS, CS ) может быть не равна длине стороны основания (на рисунке AB, AC, BC). Если длина ребра правильной треугольной пирамиды равна длине стороны основания, то такая пирамида называется тетраэдром (см. ниже).
Свойства правильной треугольной пирамиды:
боковые ребра правильной пирамиды равны
все боковые грани правильной пирамиды являются равнобедренными треугольниками
в правильную треугольную пирамиду можно как вписать, так и описать вокруг неё сферу
если центры вписанной и описанной вокруг правильной треугольной пирамиды, сферы совпадают, то сумма плоских углов при вершине пирамиды равна π (180 градусов) , а каждый из них соответственно равен π / 3 (пи делить на 3 или 60 градусов ).
площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
вершина пирамиды проецируется на основание в центр правильного равностороннего треугольника,, который является центром вписанной окружности и точкой пересечения медиан