Для начала - плоскость ADC1 проходит через вершину В1. Это, проще говоря, плоскость, проходящая через две параллельные прямые AD и B1C1.
Боковую грань DCC1D1 эта плоскость пересекает по диагонали C1D. Если в плоскости этой боковой грани DCC1D1 провести перпендикуляр КР к диагонали С1D (точка Р лежит на C1D), то КР перпендикулярно всей плоскости ADC1B1, потому что, кроме C1D, КР перпендикулярно AD (это - потому, что AD перпендикулярно всей боковой грани DCC1D1).
Таким образом, найдена третья точка плоскости сечения - Р.
Прямая КР принадлежит сечению, и параллельна диагонали грани D1C - так как у квадрата диагонали взаимно перпендикулярны. То есть КР - средняя линяя треугольника D1CD. Поэтому, если КР продолжить до пересечения с D1D (пусть это точка M), то М - середина D1D.
Получается, что сечение проходит через середины трех ребер, имеющих общую вершину D, и представляет собой равносторонний треугольник, со стороной, равной половине диагонали грани. То есть √2. Ну, а периметр 3√2.
Чертеж у вас нормальный, на ребре DD1 отметьте середину М - и постройте треугольник ЕКМ, и все.
Здесь следует рассмотреть сечение шара плоскостью, которая делит и шар,и конус таким образом, что все мы наблюдаем как бы в срезе. Смотри рисунок. Используем расширенную теорему синусов, чтобы узнать радиус описанной окружности вокруг треугольника АВС. Заметим, что этот треугольник равнобедренный. АВравно ВС как образующие конуса. Найдем АВ по теореме Пифагора
AB^2=AH^2+HB^2
AB^2=(3sqrt3)^2+3^2
AB^2=27+9
AB^2=36
AB=6 см.
Найдем противолежащий угол ВСА. Он равен углу ВАС.
По теореме синусов нам нужен синус этого угла.
sinangle BAC=frac{BH}{AB}
sinangle BAC=frac{3}{6}
sinangle BAC=frac{1}{2}
По теореме синусов
2R=frac{AB}{sinangle BCA}
2R=frac{6}{sinangle BAC}
2R=frac{6}{0,5}
2R=12
R=6 - радиус описанной окружности вокруг треугольника АВС, и радиус шара описанного вокруг конуса одновременно.
Для начала - плоскость ADC1 проходит через вершину В1. Это, проще говоря, плоскость, проходящая через две параллельные прямые AD и B1C1.
Боковую грань DCC1D1 эта плоскость пересекает по диагонали C1D. Если в плоскости этой боковой грани DCC1D1 провести перпендикуляр КР к диагонали С1D (точка Р лежит на C1D), то КР перпендикулярно всей плоскости ADC1B1, потому что, кроме C1D, КР перпендикулярно AD (это - потому, что AD перпендикулярно всей боковой грани DCC1D1).
Таким образом, найдена третья точка плоскости сечения - Р.
Прямая КР принадлежит сечению, и параллельна диагонали грани D1C - так как у квадрата диагонали взаимно перпендикулярны. То есть КР - средняя линяя треугольника D1CD. Поэтому, если КР продолжить до пересечения с D1D (пусть это точка M), то М - середина D1D.
Получается, что сечение проходит через середины трех ребер, имеющих общую вершину D, и представляет собой равносторонний треугольник, со стороной, равной половине диагонали грани. То есть √2. Ну, а периметр 3√2.
Чертеж у вас нормальный, на ребре DD1 отметьте середину М - и постройте треугольник ЕКМ, и все.
Здесь следует рассмотреть сечение шара плоскостью, которая делит и шар,и конус таким образом, что все мы наблюдаем как бы в срезе. Смотри рисунок. Используем расширенную теорему синусов, чтобы узнать радиус описанной окружности вокруг треугольника АВС. Заметим, что этот треугольник равнобедренный. АВравно ВС как образующие конуса. Найдем АВ по теореме Пифагора
AB^2=AH^2+HB^2
AB^2=(3sqrt3)^2+3^2
AB^2=27+9
AB^2=36
AB=6 см.
Найдем противолежащий угол ВСА. Он равен углу ВАС.
По теореме синусов нам нужен синус этого угла.
sinangle BAC=frac{BH}{AB}
sinangle BAC=frac{3}{6}
sinangle BAC=frac{1}{2}
По теореме синусов
2R=frac{AB}{sinangle BCA}
2R=frac{6}{sinangle BAC}
2R=frac{6}{0,5}
2R=12
R=6 - радиус описанной окружности вокруг треугольника АВС, и радиус шара описанного вокруг конуса одновременно.
Объем шара находится по стандартной формуле
V=frac{4}{3}pi*R^3
V=frac{4}{3}pi*6^3
V=4pi*6^2*2
V=8pi*36
V=288pi