точка C лежит на отрезке AB через точку A проведена плоскость, а через точки B и C параллельные прямые пересекающие эту плоскость в точках b1 и c1 Найдите длину отрезка cc1 если AC / CB равно 3 / 2 и BB1 равно 20 см
ответ: угол А=80 градусов, угол В= 90 градусов, угол С= 100 градусов, угол Д=90 градусов Принцип решения: 1) пусть точка О - центр окружности с диаметром АС, значит диагональ АС четырехугольника проходит через центр окружности О 2 ) треугольник ВОС - равнобедренный ВО=СО (т.к. точки В и С лежат на окружности), значит угол ОВС= углу ОСВ. Угол ВОС=100 градусам (т.к. дуга ВС=100 градусов), значи углы ОВС и ОСВ по 40 градусов каждый (т.к. сумма трех углов в треугольнике = 180 градусам) 3) Аналогичные рассуждения для треугольника СОД, который тоже равнобедренный: угол СОД=60 градусов (т.к. дуга СД=60 градусов), тогда угол ОДС = углу ОСД = 60 градусов 4) Для треугольника АОВ: угол АОВ= угол АОС-угол ВОС=180-100=80 градусов. Аналогичные рассуждения для треугольника АОВ, который тоже равнобедренный, тогда угол ОАВ = углу ОВА = 50 градусов 5) Для треугольника АОД угол АОД= угол АОС-угол СОД=180-60=120 градусов. Аналогичные рассуждения для треугольника АОД, который тоже равнобедренный, тогда угол ОАД = углу ОДА = 30 градусов 6) в четырехугольнике угол А (угол ДАС)=угол ОАД+угол ОАВ=30+50=80 градусов 7) в четырехугольнике угол В (угол АВС)=угол ОВА+угол ОВС=50+40=90 градусов 8) в четырехугольнике угол С (угол ВСД)=угол ОСВ+угол ОСД=40+60=100 градусов 9) в четырехуголинике угол Д (угол СДА)=угол ОДС+угол ОДА=60+30=90 градусов
В любом равнобедренном треугольнике: 1) углы при основании равны; 2) медиана, биссектриса и высота, проведенные к основанию, совпадают.
Доказательство. Оба эти свойства доказываются совершенно одинаково. Рассмотрим равнобедренный треугольник АВС, в котором АВ = ВС. Пусть ВВ1 - биссектриса этого треугольника. Как известно, прямая BB1 является ось симметрии угла АВС. но в силу равенства AB = BC при той симметрии точка А переходит в С. Следовательно, треугольники ABB1 и CBB1 равны. Отсюда все и следует. Ведь в равных фигурах равны все соответствующие элементы. Значит, ÐBAB1 = ÐBCB1. Пункт 1) доказан. Кроме этого, AB1 = CB1, т. е. BB1 - медиана и ÐBB1A = ÐBB1C = 90°; таким образом, BB1 также и высота треугольника ABC. t
Принцип решения:
1) пусть точка О - центр окружности с диаметром АС, значит диагональ АС четырехугольника проходит через центр окружности О
2 ) треугольник ВОС - равнобедренный ВО=СО (т.к. точки В и С лежат на окружности), значит угол ОВС= углу ОСВ. Угол ВОС=100 градусам (т.к. дуга ВС=100 градусов), значи углы ОВС и ОСВ по 40 градусов каждый (т.к. сумма трех углов в треугольнике = 180 градусам)
3) Аналогичные рассуждения для треугольника СОД, который тоже равнобедренный: угол СОД=60 градусов (т.к. дуга СД=60 градусов), тогда угол ОДС = углу ОСД = 60 градусов
4) Для треугольника АОВ: угол АОВ= угол АОС-угол ВОС=180-100=80 градусов. Аналогичные рассуждения для треугольника АОВ, который тоже равнобедренный, тогда угол ОАВ = углу ОВА = 50 градусов
5) Для треугольника АОД угол АОД= угол АОС-угол СОД=180-60=120 градусов.
Аналогичные рассуждения для треугольника АОД, который тоже равнобедренный, тогда угол ОАД = углу ОДА = 30 градусов
6) в четырехугольнике угол А (угол ДАС)=угол ОАД+угол ОАВ=30+50=80 градусов
7) в четырехугольнике угол В (угол АВС)=угол ОВА+угол ОВС=50+40=90 градусов
8) в четырехугольнике угол С (угол ВСД)=угол ОСВ+угол ОСД=40+60=100 градусов
9) в четырехуголинике угол Д (угол СДА)=угол ОДС+угол ОДА=60+30=90 градусов
В любом равнобедренном треугольнике: 1) углы при основании равны; 2) медиана, биссектриса и высота, проведенные к основанию, совпадают.
Доказательство. Оба эти свойства доказываются совершенно одинаково. Рассмотрим равнобедренный треугольник АВС, в котором АВ = ВС.
Пусть ВВ1 - биссектриса этого треугольника.
Как известно, прямая BB1 является ось симметрии угла АВС. но в силу равенства AB = BC при той симметрии точка А переходит в С.
Следовательно, треугольники ABB1 и CBB1 равны. Отсюда все и следует. Ведь в равных фигурах равны все соответствующие элементы. Значит, ÐBAB1 = ÐBCB1. Пункт 1) доказан. Кроме этого, AB1 = CB1, т. е. BB1 - медиана и ÐBB1A = ÐBB1C = 90°; таким образом, BB1 также и высота треугольника ABC. t