точка B делит отрезок AC в отношении 3:4 .Точка D делит отрезок AB в отношении 1 : 5.В каком отношении точка D делит отрезок AC? Рассмотрите все случаи. геометриял
В равнобедренном треугольнике АВС АВ=ВС, R=ВО1=25 см, r=МО2=12 см. С заданными параметрами R и r можно построить два равнобедренных тр-ка, в одном из которых угол при вершине будет меньше шестидесяти градусов, а в другом - больше. Действительно, только в равностороннем треугольнике центры вписанной и описанной окружностей совпадают, а в нашем, равнобедренном треугольнике, они расположены отдельно, и лежат на высоте, проведённой к основанию. Для обоих треугольников расстояние между центрами вписанной и описанной окружности можно вычислить по формуле Эйлера: d²=R²-2Rr, где d=О1О2. d²=25²-2·25·12=25, d=5 см. Пусть АС=а, АВ=ВС=b. Из формулы S=abc/2R имеем при а=b: S=b²с/2R ⇒ b²=2RS/c. Также S=ch/2, значит b²=2Rch/(2c)=2Rh. Рассмотрим два варианта отдельно. 1) ∠В<60°, тогда h>R+r. h=ВМ=ВО1+О1О2+МО2=R+d+r=25+5+12=42. b²=2·25·42=2100, b=10√21 см. В тр-ке АВМ АМ=√(АВ²-ВМ²)=√(2100-42²)=√336=4√21. Периметр АВС: Р=2(АВ+АМ)=2(10√21+4√21)=28√21 см - это ответ. 2) ∠В>60°, тогда h<R+r. Так как d<r или О1О2<МО2, то центр описанной окружности лежит внутри треугольника АВС. h=ВМ=ВО1+МО2-О1О2=R+r-d=25+12-5=32 cм. b²=2·25·32=1600, b=40 см. В тр-ке АВМ АМ=√(АВ²-ВМ²)=√(40²-32²)=24 см. Периметр АВС=2(АВ+АМ)=2(40+24)=128 см - это ответ.
Разность координат точек В и А равна разности координат точек С и Д.
Разность координат точек Д и С: Δx = -1-5=-6,
Δy = 0-(-4) = 4,
Δz = 2-1 = 1.
Находим координаты точки В: х = т.А+Δх = 1+(-6) = -5.
y = т.А+Δу = 3+4 = 7.
z = т.А+Δz = 2+1 = 3.
Разность координат точек В и Д: Δx = 5-(-5)=10,
Δy = -4-7 = -11,
Δz = 1-3 = -2.
Длина диагонали ВД равна:
ВД = √(10²+(-11)²+(-2)²) = √(100+121+4) = √225 = 15.
С заданными параметрами R и r можно построить два равнобедренных тр-ка, в одном из которых угол при вершине будет меньше шестидесяти градусов, а в другом - больше. Действительно, только в равностороннем треугольнике центры вписанной и описанной окружностей совпадают, а в нашем, равнобедренном треугольнике, они расположены отдельно, и лежат на высоте, проведённой к основанию.
Для обоих треугольников расстояние между центрами вписанной и описанной окружности можно вычислить по формуле Эйлера:
d²=R²-2Rr, где d=О1О2.
d²=25²-2·25·12=25,
d=5 см.
Пусть АС=а, АВ=ВС=b.
Из формулы S=abc/2R имеем при а=b:
S=b²с/2R ⇒ b²=2RS/c.
Также S=ch/2, значит
b²=2Rch/(2c)=2Rh.
Рассмотрим два варианта отдельно.
1) ∠В<60°, тогда h>R+r.
h=ВМ=ВО1+О1О2+МО2=R+d+r=25+5+12=42.
b²=2·25·42=2100,
b=10√21 см.
В тр-ке АВМ АМ=√(АВ²-ВМ²)=√(2100-42²)=√336=4√21.
Периметр АВС: Р=2(АВ+АМ)=2(10√21+4√21)=28√21 см - это ответ.
2) ∠В>60°, тогда h<R+r.
Так как d<r или О1О2<МО2, то центр описанной окружности лежит внутри треугольника АВС.
h=ВМ=ВО1+МО2-О1О2=R+r-d=25+12-5=32 cм.
b²=2·25·32=1600,
b=40 см.
В тр-ке АВМ АМ=√(АВ²-ВМ²)=√(40²-32²)=24 см.
Периметр АВС=2(АВ+АМ)=2(40+24)=128 см - это ответ.