В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Lirki
Lirki
25.07.2020 06:39 •  Геометрия

Тема: умножение вектора на число. 9 класс. 2 уровень. , . в файле. 100 ! ​

Показать ответ
Ответ:
polinaabramova10
polinaabramova10
03.07.2022 19:09

Даны координаты вершин треугольника ABCA: (− 1,−1), B( 2,5 ), C( 3,2 ).

Найти:

1) Уравнение линии BC ;

Вектор ВС = (3-2; 2-5)= (1; -3).

Уравнение ВС: (х - 2)/1 = (у - 5)/(-3) или в виде уравнения с угловым коэффициентом у = -3х + 11.

2) Уравнение высоты AK - это перпендикуляр к стороне ВС.

Тогда к(АК) = -*1/к(ВС) = -1/(-3) = 1/3.

Уравнение АК: у = (1/3)х + в.

Чтобы найти в подставим координаты точки А: -1 = (1/3)*(-1) + в, отсюда

в = -1 + (1/3) = (-2/3).

Уравнение АК: у = (1/3)х - (2/3).

3) Длину высоты AK ;

Это расстояние от точки А до прямой ВС.

Для вычисления расстояния от точки M(Mx; My) до прямой Ax + By + C = 0 используем формулу:

d =   |A·Mx + B·My + C| /√(A² + B²).

Подставим в формулу данные:

d =   |3·(-1) + 1·(-1) + (-11)|/ √32 + 12  =   |-3 - 1 - 11| /√(9 + 1 ) =

=   15 /√10  =   3√10 /2  ≈ 4.743416.

4) Уравнение прямой (l), которая проходит через точку A параллельно прямой BC ;

У этой прямой угловой коэффициент равен такому у прямой ВС,

Уравнение: у = -3х + в. Подставим координаты точки А:

-1 = (-3)*(-1) + в, отсюда в = -1 - 3 = -4.

Уравнение: у = -3х - 4.

5) Уравнение медианы (AM ), проведенной через вершину A;

Находим координаты точки М как середину стороны ВС. B( 2,5 ), C( 3,2 )

М = (2,5; 3,5). Вектор АМ = (2,5-(-1); 3,5-(-1)) = (3,5; 4,5).

Уравнение АМ: (х + 1)/3,5 = (у + 1)/4,5 или с целыми коэффициентами

(х + 1)/7 = (у + 1)/9.

Уравнение АМ в общем виде 9х - 7у + 2 = 0.

6) Угол (φ), образованный медианой, проведенной из вершины A, и стороной AB;

Вектор АВ = (2-(-1); 5-(-1)) = (3; 6). Модуль равен √(9+36) = √45 = 3√5.

Вектор АМ = (7; 9).  Модуль равен √(49+81) = √130.

cos φ = (3*7 + 6*9)/(3√5*√130) = 75/15√26 = 5√26/26 = 0,98058.

Угол φ = arc cos(5√26/26) = 0,1974 радиан или 11,30993 градуса.

7) Площадь треугольника ABC ;

S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)| = 7,5  кв.ед.

8) Периметр треугольника ABC .

Периметр Р = 14,87048 .


По координатам вершин треугольника ∆ABC найти: • уравнение линии BC ; • уравнение высоты AK ; • длин
0,0(0 оценок)
Ответ:
Viktoria727
Viktoria727
24.02.2023 11:58

Даны вершины треугольника A(−2,1), B(3,3), С(1,0). Найти:

а) длина стороны AB = √((3-(-2))² + (3-1)² = √(25 + 4) = √29.

б) уравнение медианы BM.  

Находим координаты точки М как середины стороны АС.

М(((-2+1)/2; (1+3)/2) = (-0,5; 2).

Вектор ВМ = ((-0,5-3); (2-3)) = (-3,5; -1).

Уравнение ВМ: (х – 3)/(-3,5) = (у – 3)/(-1). Это в каноническом виде.

Оно же в общем виде 7у – 2х – 15 = 0.

И в виде уравнения с угловым коэффициентом у = (2/7)х + (15/7).

в) cos угла BCA.  

Вектор СВ = ((1-3); (0-3)) = (-2; -3). Модуль равен √(4 + 9) = √13.

Вектор СА = ((1-(-2)); (0-1)) = (3; -1). Модуль равен √(9 + 1) = √10.

cos(BCA) = (-2*3 + (-3)*(-1))/( √13*√10) = -3/√130 ≈ -0,26312.

г) уравнение высоты CD.

Находим уравнение стороны АВ.

Вектор AB = ((3-(-2)); (3-1)) = (5; 2).

Уравнение АВ: (х + 2)/5 = (у -1)/2 или у = (2/5)х + (9/5).

Угловой коэффициент перпендикуляра к АВ (это высота СD) равен -1/(2/5) = -5/2. Подставим координаты точки С.

0 = (-5/2)*1 + b. Отсюда b = 5/2.  

Уравнение CD: y = (-5/2)x + (5/2).

д) длина высоты СD.

Для вычисления расстояния от точки M(Mx; My) до прямой Ax + By + C = 0 используем формулу:

d = (A·Mx + B·My + C)/√A2 + B2

Подставим в формулу данные: координаты точки С(1; 0) и уравнение прямой АВ:  

2х – 5у + 9 = 0.

d = (2·1 + (-5)·0 + 9)/√22 + (-5)2 = (2 + 0 + 9)/√4 + 25 =

= 11/√29 = 11√29/29 ≈ 2.0426487.

е) площадь треугольника АВС по векторам.

Если вершины треугольника заданы, как точки в прямоугольной декартовой системе координат: A1(x1,y1), A2(x2,y2), A3(x3,y3), то площадь такого треугольника можно вычислить по формуле определителя второго порядка:

S= ± (1 /2) *(x1−x3       y1−y3 )

                       (x2−x3      y2−y3 )  

       

 x1−x3       y1−y3  

        x2−x3      y2−y3    

A(−2,1), B(3,3), С(1,0).

S = (1/2)}|((-2-1)*(3-0) – (1-0)*3-1))| = (1/2)*|(-9-2)| = 11/2 = 5,5 кв.ед.  

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота