Түзудегі бір нүктеден бір бағытта уштен кесінді орналасқан. кесіндінің ұшы екінші кесіндінің ортасы, ал екінші кесіндінің ұшы үшінші кесіндінін ортасы болып келеді. ұш- пары бірінші кесіндінін басы мен үшінші кесіндінің ұшы тын кесіндінің ұзындығы 28 см. осы кесінділердің ұзынды табыңдар.
1))). Если луч есть биссектриса угла, то любая точка его равноудалена от сторон этого угла.
2))). Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.
Свойства серединных перпендикуляров треугольника
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.
Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.
3))). 1. Точка пересечения биссектрис треугольника- центр вписанной окружности ;
2. Точка пересечения серединных перпендикуляров треугольника- центр описанной окружности ;
3. Точка пересечения медиан треугольника (медианы треугольника пересекаются в отношении 2:1)
4. Точка пересечения высот треугольника - ортоцентр фигуры (центр вписанной и описанной окружности).
Объяснение:
КТР - искомое сечение.
2. Пусть К - середина AD, Р - середина СС₁, Т - середина А₁В₁.
1) Т₁С - проекция прямой ТР на плоскость основания.
ТР ∩ Т₁С = Е, - это точка пересечения прямой ТР с плоскостью основания.
Точки Е и К принадлежат основанию, значит ЕК - след сечения на плоскости основания.
ЕК ∩ CD = L
KL - отрезок сечения.
Точки L и Р лежат в одной плоскости, соединяем.
PL - отрезок сечения.
2) Плоскость (АВС) пересекается с плоскостью (АА₁В₁) по прямой АВ.
KL ∩ AB = F
Точка F принадлежит плоскости (АА₁В₁) и точка Т тоже.
FT ∩ AA₁ = M
КМ и ТМ - отрезки сечения.
3) Плоскость (АА₁В₁) пересекается с плоскостью (ВВ₁С₁) по прямой ВВ₁.
FT ∩ BB₁ = G.
Точка G принадлежит плоскости (ВВ₁С₁) и точка Р тоже.
GP ∩ B₁C₁ = N.
NP и NT - отрезки сечения.
KMTNPL - искомое сечение.