Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Опустим из точки S перпендикуляры: SH на сторону BC и SF на сторону CD. SH - наклонная, AS - перпендикуляр, AH - проекция; Согласно теореме, обратной теореме о 3 перпендикулярах, если BC перпендикулярно SH, то BC перпендикулярно AH, следовательно, AH - высота. SF - наклонная, AS - перпендикуляр, AF - проекция; Согласно теореме, обратной теореме о 3 перпендикулярах, если CD перпендикулярно SF, то CD перпендикулярно AF, следовательно, AF - высота. Рассмотрим прямоугольные треугольники SAF и SAH: 1) AS - общая сторона; 2) AF=AH - т.к. высоты ромба; Следовательно, треугольники равны по 2 катетам. Значит, SH=SF, т.е. точка S равноудалена от прямых BC и CD, что и требовалось доказать.
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
SH - наклонная, AS - перпендикуляр, AH - проекция;
Согласно теореме, обратной теореме о 3 перпендикулярах, если BC перпендикулярно SH, то BC перпендикулярно AH, следовательно, AH - высота.
SF - наклонная, AS - перпендикуляр, AF - проекция;
Согласно теореме, обратной теореме о 3 перпендикулярах, если CD перпендикулярно SF, то CD перпендикулярно AF, следовательно, AF - высота.
Рассмотрим прямоугольные треугольники SAF и SAH:
1) AS - общая сторона;
2) AF=AH - т.к. высоты ромба;
Следовательно, треугольники равны по 2 катетам. Значит, SH=SF, т.е. точка S равноудалена от прямых BC и CD, что и требовалось доказать.