Дан прямой цилиндр с радиусом круга 3 и высотой 4. Найдите V и
S( бок.поверхности) , вписанного в этот цилиндр прямого конуса (вершина конуса находится в центре одного из оснований цилиндра). ответы разделите на π и округлите до сотых, при необходимости.
Объяснение:
Если конус вписан в цилиндр , то основания совпадают, поэтому
r( конуса)=3.
Т.к. вершина конуса находится в центре верхнего основания цилиндра , то h( цилиндра)=h( конуса)=4.
Дан прямой цилиндр с радиусом круга 3 и высотой 4. Найдите V и
S( бок.поверхности) , вписанного в этот цилиндр прямого конуса (вершина конуса находится в центре одного из оснований цилиндра). ответы разделите на π и округлите до сотых, при необходимости.
Объяснение:
Если конус вписан в цилиндр , то основания совпадают, поэтому
r( конуса)=3.
Т.к. вершина конуса находится в центре верхнего основания цилиндра , то h( цилиндра)=h( конуса)=4.
V(конуса )=1/3*S(осн)*h , V(пирам)=1/3*(π*3²)*4=12π .
S(бок.конуса )= π * r* L . Найдем L из прямоугольного треугольника по т. Пифагора L= √( 3³+4²)=√25=5.
S(бок.конуса )=π*3*5=15π.
ответ : V(пирам)/π=12 , S(бок.конуса )/π=15.
Если что-то не понятно, пиши в комментариях, постараюсь максимально понятно все рассказать и объяснить
1. 8 вершин
2. Стоит ли объяснять, как строить? Если да, напиши, объяснить просто постараюсь
3. 12 ребер
1. CLND, BMLC, ABCD
2.
a) MN²=MK²+KN²
MK = AB = 3 см
KN = AD = 6 см
MN² = 3² + 6² = 9 + 36 = 45
MN = √45 = √(9*5) = √(3²*5) = 3√5
MN = 3√5 см
б) NL = AB = 3 см
NL = 3 см
в) DL²=DC²+CL²
DC = AB = 3 см
CL = AK = 4 см
DL² = 3² + 4² = 9 + 16 = 25
DL = √25 = 5
DL = 5 см
3. Изобрази на листе в клетку прямоугольник ABMK, со сторонами AK = MB = 3 см и MK = AB = 4 см
4. ABMK = DCLN = 4*3 = 12 см²
ADNK = BCLM = 4*6 = 24 см²
MLNK = ABCD = 3*6 = 18 см²
5. S поверхности параллелепипеда = 12*2 + 24*2 + 18*2 (сумма всех граней) = 24 + 48 + 36 = 108 см²
S = 108 см²