СОЧ за 1 четверть, Геометрия 11 класс 1. Длины сторон оснований правельной треугольной усечённой пирамиды равны 10см и 4см, а высота пирамиды 2см. Найдите: а) длину апофемы пирамиды; б) длину бокового ребра. 2. В основании прямой призмы лежит ромб с острым углом 60 и стороной 8 см. Найдите диагонали призмы, если её боковое ребро равно 4 см. 3. Палатка туристов имеет форму треугольной призмы, как показано на рисунке. известно что АВ=АС=1,4м; ВС=1,6м; ВВ1=2,5м; h=1,2м; Snn-?
Дайте подробный ответ с объяснением, с так же с чертежами )
Т.к. она равноудалена от вершин треугольника АВС, то ее перпендикуляр МН (расстояние до треугольника) опускается в центр описанной около треугольника окружности. Центр описанной около прямоугольного треугольника окружности лежит в середине гипотенузы.
Через две пересекающиеся прямые можно провести плоскость, и притом только одну.
Две стороны треугольника однозначно принадлежат ДВУМ пересекающимся прямым - т. е. они принадлежат одной плоскости, обозначим ее β, а т. к. они параллельны другой плоскости из условия обозначим ее α, то и эти обе плоскости параллельны αIIβ. Т .к. две точки третьей стороны принадлежат плоскости β (точки пересечения с другими сторонами, которые ей принадлежат), то и вся она принадлежит β. Т. к. αIIβ то и 3-я сторона II α
Пусть точка вне плоскости М.
Т.к. она равноудалена от вершин треугольника АВС, то ее перпендикуляр МН (расстояние до треугольника) опускается в центр описанной около треугольника окружности. Центр описанной около прямоугольного треугольника окружности лежит в середине гипотенузы.
Значит НВ = АВ:2 = 6см
Получился прямоугольный треугольник МВН: гипотенуза МВ = 10см,
катет НВ = 6см и катет МН, который нужно найти.
Теорема Пифагора
МН² = МВ² - НВ² = 100 - 36 = 64 = 8²
ответ: расстояние от точки до плоскости 8 см
Объяснение:
Через две пересекающиеся прямые можно провести плоскость, и притом только одну.
Две стороны треугольника однозначно принадлежат ДВУМ пересекающимся прямым - т. е. они принадлежат одной плоскости, обозначим ее β, а т. к. они параллельны другой плоскости из условия обозначим ее α, то и эти обе плоскости параллельны αIIβ. Т .к. две точки третьей стороны принадлежат плоскости β (точки пересечения с другими сторонами, которые ей принадлежат), то и вся она принадлежит β. Т. к. αIIβ то и 3-я сторона II α