Внешняя точка - C, центр большой окружности - O пусть K - точка касания маленькой окружности и описанной в условии фигуры; ok ∩ mn = L проведем через неё касательную к обеим окружностям, пусть точки пересечения ей сторон угла MCN A и B. OK ⊥ AB по св-у касательной OK ⊥ MN, тк ol - биссектриса равнобедренного треугольника mon (равенство углов следует из равенства треугольников cmo и cno) таким образом ab || mn значит Δabc ~ Δamn по двум углам и Δabc - равносторонний (∠cmn = = ∠mnc = ∠cab = ∠cba = 60 (угол между касательной и хордой равен половине дуги заключенной между ними)) большая окружность - вневписанная для Δabc => cn = cm = полупериметру пусть сторона abc = a тогда cm = 1.5a ca / cm = 2 / 3 mn по теореме косинусов из Δmon = 18√3 ab = 2 mn / 3 = 12√3 = a осталось найти радиус вписанной окружности в равносторонний треугольник abc со стороной 12√3 S = p * r = a²√3 / 4 r = a^2 √3 / (4 * 1.5a) = a * √3 / 6 = 12 * 3 / 6 = 6 Длина окружности с радиусом 6 = 2π * 6 = 12π ответ: 12π
1. Диагональ осевого сечения делит квадрат на два равнобедренных прямоугольных треугольника с острыми углами в 45° H=4√2·sin45°=4 Диаметр основания D(основания)=Н=4 R=D/2=2 V=πR²H=π2²·4=16π В ответе 16π:π=16 2. V₁:V₂=πR²₁H₁:πR²₂H₂=3²·5:5²·3=3:5=0,6 3. Диагональ осевого сечения делит прямоугольник на два равных прямоугольных треугольника с острыми углами в 30° и 60°. Катет, против угла в 30°( высота цилиндра) равен половине гипотенузы 4/2=2 Диаметр основания по теореме Пифагора D= √(4²-2²)=√12=2√3 Радиус основания R=D/2=√3 V=πR²H=π(√3)²·2=6π В ответе 6π:π=6 4) S(бок. цилиндра)=2π·R·H 2π·R·H=2π R·H=1 D=1 ⇒ 2R=1 ⇒ R=1/2 H=2 V=πR²H=π(1/4)·2=(1/2)π В ответе (1/2)π:π=1/2=0,5
пусть K - точка касания маленькой окружности и описанной в условии фигуры;
ok ∩ mn = L
проведем через неё касательную к обеим окружностям, пусть точки пересечения ей сторон угла MCN A и B.
OK ⊥ AB по св-у касательной
OK ⊥ MN, тк ol - биссектриса равнобедренного треугольника mon (равенство углов следует из равенства треугольников cmo и cno)
таким образом ab || mn
значит Δabc ~ Δamn по двум углам и Δabc - равносторонний (∠cmn = = ∠mnc = ∠cab = ∠cba = 60 (угол между касательной и хордой равен половине дуги заключенной между ними))
большая окружность - вневписанная для Δabc
=> cn = cm = полупериметру
пусть сторона abc = a
тогда cm = 1.5a
ca / cm = 2 / 3
mn по теореме косинусов из Δmon = 18√3
ab = 2 mn / 3 = 12√3 = a
осталось найти радиус вписанной окружности в равносторонний треугольник abc со стороной 12√3
S = p * r = a²√3 / 4
r = a^2 √3 / (4 * 1.5a) = a * √3 / 6 = 12 * 3 / 6 = 6
Длина окружности с радиусом 6 = 2π * 6 = 12π
ответ: 12π
H=4√2·sin45°=4
Диаметр основания
D(основания)=Н=4
R=D/2=2
V=πR²H=π2²·4=16π
В ответе 16π:π=16
2.
V₁:V₂=πR²₁H₁:πR²₂H₂=3²·5:5²·3=3:5=0,6
3.
Диагональ осевого сечения делит прямоугольник на два равных прямоугольных треугольника с острыми углами в 30° и 60°.
Катет, против угла в 30°( высота цилиндра) равен половине гипотенузы 4/2=2
Диаметр основания по теореме Пифагора
D= √(4²-2²)=√12=2√3
Радиус основания R=D/2=√3
V=πR²H=π(√3)²·2=6π
В ответе 6π:π=6
4) S(бок. цилиндра)=2π·R·H
2π·R·H=2π
R·H=1
D=1 ⇒ 2R=1 ⇒ R=1/2
H=2
V=πR²H=π(1/4)·2=(1/2)π
В ответе (1/2)π:π=1/2=0,5