Т.к. АВ биссектриса угла САD отсюда следует, что CAB равен BAD. По теореме УСУ, если две углов и одна сторона треугольника равны углам и стороне другого треугольника, то эти треугольники равны, отсюда следует что треугольники равны.
2) Доно:
треугольники RSO и POT
RO=OT; SO=OP
Доказать:
RSO=POT
Доказательство:
По теореме смежных углов, угол ROS равен углу POT. По теореме СУС, если две стороны и один угол треугольника равен другому то эти треугольники равны, отсюда следует что треугольники равны.
3) Доно:
треугольники EOF и MON
EO=ON и угол FEO=ONM
Доказать:
EOF=MON
Доказательство:
Т.к. угол FEO=ONM равны, то соответственно и стороны будут равны, отсюда следует что FO=MO. По теореме СУС, если две стороны и один угол треугольника равен другому то эти треугольники равны, отсюда следует что треугольники равны.
1) Доно:
треугольники АВС и АВD
AB биссектриса углов САD и CBD
BC=CD
Доказать:
АВС=СВD
Доказательство:
Т.к. АВ биссектриса угла САD отсюда следует, что CAB равен BAD. По теореме УСУ, если две углов и одна сторона треугольника равны углам и стороне другого треугольника, то эти треугольники равны, отсюда следует что треугольники равны.
2) Доно:
треугольники RSO и POT
RO=OT; SO=OP
Доказать:
RSO=POT
Доказательство:
По теореме смежных углов, угол ROS равен углу POT. По теореме СУС, если две стороны и один угол треугольника равен другому то эти треугольники равны, отсюда следует что треугольники равны.
3) Доно:
треугольники EOF и MON
EO=ON и угол FEO=ONM
Доказать:
EOF=MON
Доказательство:
Т.к. угол FEO=ONM равны, то соответственно и стороны будут равны, отсюда следует что FO=MO. По теореме СУС, если две стороны и один угол треугольника равен другому то эти треугольники равны, отсюда следует что треугольники равны.
Даны точки А(-1;2), В(2;-1), С(5;3).
Вектор АВ = ((2-(-1)); (-1-2)) = (3; -3), модуль равен √(9+9) = √18 = 3√2.
Вектор АС = ((5-(-1); (3-2)) = (6; 1), модуль равен √(36+1) = √37.
cos a = (3*6 + (-3)*1) / (3√2*√37) = 15/(3√74) ≈ 0,58124.
Угол А = 54,46223°.
Угол В аналогично.
Вектор ВА -3 3 модуль 3√2
Вектор ВС 3 4 модуль 5
cos b = (-3*3 + 3*4) / (3√2*5) = 3/(15√2) ≈ 0,14142.
Угол B = 81,87°.
Площадь треугольника равна половине модуля векторного произведения.
Находим векторное произведение.
i j k| i j
AB 3 -3 0| 3 -3
AC 6 1 0| 6 1 = 0i + 0j + 3 k -0j - 0i + 18k = 21k.
S = (1/2)*21 = 10,5 кв.ед.