Sa- перпендикуляр до площини параллелограмма abcd, о- точка перетину діагоналей паралелограма. установіть відповідність між видом паралелограма abcd і умовами, за яких паралелограм abcd є чотирикутником зазначеного виду
Все стороны квадрата равны. АВСD – квадрат по условию, тогда AD=AB=CD=5 см.
Углы квадрата прямые, то есть угол ADC=90°, следовательно ∆ADC – прямоугольный.
В прямоугольном треугольнике ASC по теореме Пифагора:
AC²=AD²+CD²
AC²=5²+5²
АС²=25+25
АС=√50 см
Если прямая перпендикулярна плоскости, значит она перпендикулярна всем прямым, лежащим на этой плоскости. Исходя из этого: так как SA перпендикулярна АВСD, то угол SAB=угол SAC=90°.
Так как угол SAB=90°, то ∆SAB – прямоугольный.
В прямоугольном треугольнике SAB по теореме Пифагора:
SB²=SA²+AB²
12²=SA²+5²
144=SA²+25
Так как угол SAC=90°, то ∆SAC – прямоугольный.
В прямоугольном треугольнике SAC по теореме Пифагора:
Из этого следует, что треугольники равны по 1 признаку равенства треугольников.
2) Из равенства треугольников следует равенство соответственных элементов :
1 углы ACD и АВD равны
2 углы АDВ и АDC равны
Следовательно угол АВD = 38 °, a угол ADB = 102°
(2). Углы ENM и KNF в треугольниках вертикальные, из этого следует, что они равны. MN=NK, EN=NF, из этого следует, что треугольники MNE и KNF равны по первому признаку равенства треугольников.
MK = MN + NK, а так как MN=NK, то MN = 1\2MK = 10\2 = 5 см.
Все стороны квадрата равны. АВСD – квадрат по условию, тогда AD=AB=CD=5 см.
Углы квадрата прямые, то есть угол ADC=90°, следовательно ∆ADC – прямоугольный.
В прямоугольном треугольнике ASC по теореме Пифагора:
AC²=AD²+CD²
AC²=5²+5²
АС²=25+25
АС=√50 см
Если прямая перпендикулярна плоскости, значит она перпендикулярна всем прямым, лежащим на этой плоскости. Исходя из этого: так как SA перпендикулярна АВСD, то угол SAB=угол SAC=90°.
Так как угол SAB=90°, то ∆SAB – прямоугольный.
В прямоугольном треугольнике SAB по теореме Пифагора:
SB²=SA²+AB²
12²=SA²+5²
144=SA²+25
Так как угол SAC=90°, то ∆SAC – прямоугольный.
В прямоугольном треугольнике SAC по теореме Пифагора:
SC²=SA²+AC²
SC²=(√119)²+(√50)²
SC²=119+50
SC²=√169
SC=13 см.
ответ: 13 см.
(1). Рассмотрим треугольник АВD и АСD. У них :
1) АВ=ВС (по условию )
углы 1 и 2 равны (по условию )
сторона AD общая
Из этого следует, что треугольники равны по 1 признаку равенства треугольников.
2) Из равенства треугольников следует равенство соответственных элементов :
1 углы ACD и АВD равны
2 углы АDВ и АDC равны
Следовательно угол АВD = 38 °, a угол ADB = 102°
(2). Углы ENM и KNF в треугольниках вертикальные, из этого следует, что они равны. MN=NK, EN=NF, из этого следует, что треугольники MNE и KNF равны по первому признаку равенства треугольников.
MK = MN + NK, а так как MN=NK, то MN = 1\2MK = 10\2 = 5 см.
Треугольники равны, значит ME = KF = 8 см.