обозначим вершины треугольника А В С, точки касания М, К, Р, а центр вписанной окружности О. Стороны треугольника являются касательными к вписанной окружности, и отрезки касательных соединяясь в одной вершине равны от вершины до точки касания, поэтому: ВМ=ВК, АМ=АР, КС=РС. Пусть ВМ=ВК=х, тогда АМ=РМ=5–х, КС=РС=7–х. В этом случае сторона АС=АР+РС. Составим уравнение:
Объяснение:
1.
<2=180-59=121
2.
Внешний угол треугольника равен сумме двух оставшихся углов не смежных с этим внешним углом :
109=<М+<Квнутр
109=63+<Квнутр
<Квнутр=109-63
<К внутр =46
<Квнеш =180-46=134
3.
<А:<В:<С=13:17:6
<А=13х
<В=17х
<С=6х
<А+<В+<С=180
13х+17х+6х=180
36х=180
Х=5
<А=13×5=65
<В=17×5=85
<С=6×5=30
а) треугольник остроугольный
б) С<А<В
В треугольнике против большего угла лежит большая сторона
АВ<ВС<АС
Против <В лежит сторона АС
Длинная сторона АС
4.
Если основание а =2,7cм ,то
Боковая сторона b=6,5 см
ответ : 6,5 см ; 2,7 см
Если основание а =6,5 см, то
Боковая сторона =2,7 см
ответ : 2,7 см ; 6,5 см. Но такого тр-ка не существует, т. к в треугольнике сумма двух сторон не может быть меньше третьей
2,7+2,7<6,5
5,4<6,5
5.
<А=60 <С=90 СМ - высота ВС=9,4 см
Найти : СМ
<В=180-<С-<А=180-90-60=30
Рассмотрим тр-к СВМ:
<СМВ=90 <В=30 ВС=9,4 см
Катет лежащий против угла 30 равен половине гипотенузе
СМ=1/2×ВС=1/2×9,4=4,7 см
6.
<ABM=x
<CBM=x+54
<СВМ+СВN=180
x+54+68=180
X=180-68-54
X=58
<ABM=58
<A=<ABM=58
<ABC=180-<A-<C=180-58-68=54
ответ : <А=58 <АВС=54 <С=68
ВМ=1
ВК=1
АМ=4
АР=4
КС=6
РС=6
Объяснение:
обозначим вершины треугольника А В С, точки касания М, К, Р, а центр вписанной окружности О. Стороны треугольника являются касательными к вписанной окружности, и отрезки касательных соединяясь в одной вершине равны от вершины до точки касания, поэтому: ВМ=ВК, АМ=АР, КС=РС. Пусть ВМ=ВК=х, тогда АМ=РМ=5–х, КС=РС=7–х. В этом случае сторона АС=АР+РС. Составим уравнение:
(5–х)+(7–х)=10
5–х+7–х=10
–2х+12=10
–2х=10–12
–2х= –2
х= –2÷(–2)
х=1
Итак: ВМ=ВК=1, тогда АМ=АР=5–1=4
КС=РС=7–1=6