Высота, опущенная на гипотенузу прямоугольного треугольника, равна среднему геометрическому отрезков, на которые она делит гипотенузу. Пусть в прямоугольном треугольнике ABC с гипотенузой C проведена высота CH, при этом AH=x, BH=x+5 (по условию, один из этих отрезков больше другого на 5 см). Тогда CH²=AH*BH, 6²=x(x+5), x²+5x=36, x²+5x-36=0. Решим это квадратное уравнение: D=25+36*4=169=13², x₁=(-5+13)/2=4, x₂=(-5-13)/2=-9, x₂ - посторонний корень, так как длина отрезка - положительное число. Тогда AH=4, BH=9, AB=13. Рассмотрим прямоугольный треугольник ACH, в нём катеты AH и CH равны 4 и 6, тогда гипотенуза AC по теореме Пифагора равна √4²+6²=√52. Аналогично, рассмотрим прямоугольный треугольник BCH, в котором катеты CH и BH равны 6 и 9, тогда гипотенуза BC по теореме Пифагора равна √6²+9²=√117.
Таким образом, стороны треугольника равны √52, √117, 13.
В прямой треугольной призме высота призмы равна боковому ребру. Сечение, проведённое через боковое ребро и меньшую высоту основания является прямоугольником, так как призма прямая. Чтобы найти его площадь, необходимо найти меньшую высоту основания.
Зная три стороны треугольника в основании, можно вычислить его площадь по формуле Герона - S=√p(p-a)(p-b)(p-c), здесь a=10, b=17, c=21, p= (a+b+c)/2 =(10+17+21)/2=24, S=√24(24-10)(24-17)(24-21) = √24*14*7*3=7√24*6=84. Пусть меньшая высота основания равна h. Известно, что в треугольнике меньшая высота проведена к большей стороне, которая равна 21. Тогда площадь треугольника равна 1/2*21*h, откуда, зная, что площадь равна 84, можно найти h - 1/2*21*h=84, h=8.
Таким образом, соседние стороны сечения равны 8 и 18, тогда его площадь равна 8*18=144 см².
Таким образом, стороны треугольника равны √52, √117, 13.
Зная три стороны треугольника в основании, можно вычислить его площадь по формуле Герона - S=√p(p-a)(p-b)(p-c), здесь a=10, b=17, c=21, p= (a+b+c)/2 =(10+17+21)/2=24, S=√24(24-10)(24-17)(24-21) = √24*14*7*3=7√24*6=84. Пусть меньшая высота основания равна h. Известно, что в треугольнике меньшая высота проведена к большей стороне, которая равна 21. Тогда площадь треугольника равна 1/2*21*h, откуда, зная, что площадь равна 84, можно найти h - 1/2*21*h=84, h=8.
Таким образом, соседние стороны сечения равны 8 и 18, тогда его площадь равна 8*18=144 см².