По условию АВ⊥АD, ВС║AD, значит, АВ⊥ВС ⇒ трапеция АВСD - прямоугольная. Средняя линия МN=(ВС+AD):2 ⇒ BC+AD=2•MN=2•18=36. BC:AD=1:8, следовательно, AD=8BC и сумма оснований равна BC+8BC=9BC ⇒ BC=36:9=4. AD=8•4=32.
Сумма углов при одной стороне трапеции равна 180° (внутренние односторонние). Поэтому угол СDA=45°. Опустим из вершины С высоту СН. AH=BC=4. Отрезок НD=32-4=28. Треугольник СНD прямоугольный. Из суммы углов треугольника ∠DСH=180°-90°-45°=45° ⇒ ∆ СDH - равнобедренный. СН=НD=28. По построению СН⊥AD и АВ⊥AD по условию. Два перпендикуляра между параллельными сторонами равны. ⇒ АВ=СН=28 (ед. длины)
Решаем задачи по геометрииЭлементы произвольного треугольника ABC обычно обозначаются так: BC, CA, AB — стороны; a, b, c — их длины; α, β, γ — величины противолежащих углов; ha, ma, la — высота, медиана и биссектриса, выходящие из вершины A; R — радиус описанной окружности, r — радиус вписанной окружности; S — площадь, p — полупериметр. Отметим, что в отдельных задачах обозначения могут отличаться от стандартных.
Теорема 1 (теорема Пифагора). В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы, то есть c2 = a2 + b2, где c — гипотенуза треугольника.
Теорема 2. Для прямоугольного треугольника (рис. 1) верны следующие соотношения: a = c cos β = c sin α = b tg α = b ctg β,
По условию АВ⊥АD, ВС║AD, значит, АВ⊥ВС ⇒ трапеция АВСD - прямоугольная. Средняя линия МN=(ВС+AD):2 ⇒ BC+AD=2•MN=2•18=36. BC:AD=1:8, следовательно, AD=8BC и сумма оснований равна BC+8BC=9BC ⇒ BC=36:9=4. AD=8•4=32.
Сумма углов при одной стороне трапеции равна 180° (внутренние односторонние). Поэтому угол СDA=45°. Опустим из вершины С высоту СН. AH=BC=4. Отрезок НD=32-4=28. Треугольник СНD прямоугольный. Из суммы углов треугольника ∠DСH=180°-90°-45°=45° ⇒ ∆ СDH - равнобедренный. СН=НD=28. По построению СН⊥AD и АВ⊥AD по условию. Два перпендикуляра между параллельными сторонами равны. ⇒ АВ=СН=28 (ед. длины)
BC, CA, AB — стороны;
a, b, c — их длины;
α, β, γ — величины противолежащих углов;
ha, ma, la — высота, медиана и биссектриса, выходящие из вершины A;
R — радиус описанной окружности,
r — радиус вписанной окружности;
S — площадь,
p — полупериметр.
Отметим, что в отдельных задачах обозначения могут отличаться от стандартных.
Теорема 1 (теорема Пифагора). В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы, то есть
c2 = a2 + b2,
где c — гипотенуза треугольника.
Теорема 2. Для прямоугольного треугольника (рис. 1) верны следующие соотношения:
a = c cos β = c sin α = b tg α = b ctg β,
где c — гипотенуза треугольника.