С циркуля и линейки постройте 1) треугольник ABC, у которого АВ=5см, АС=4см, ВС=3см. 2) биссектрису угла АВС Полное оформление Дано, Построить, построение и описание хода построения.
Расстояние от вершин треугольника до точек касания вписанной окружности равны по теореме о касательных.Обозначим расстояние от вершины угла при основании до точки касания окружности боковой стороны 8х,от этой точки до вершины угла напротив основания 3х( ПО УСЛОВИЮ).Получаем боковая сторона= 11х.Тогда по т-ме о касательной , расстояние от вершины при основании до точки касания окружности с основанием тоже = 8х.Все по той же теореме вторая боковая сторона делится точкой касания на отрезки 8х и 3х, считая от основания, а само основание на отрезки 8х и 8х.Тогда Р= 11х+11х+8х+8х=38х=76 х=2.Значит боковая сторона 11*2=22 ,основание 16*2=32
Пусть данный ΔАВС, ∟A = 60 °, ∟B = 70 °, АВ = 2 см, AD = 1 см.
Найдем углы ΔBDC.
В ΔABD проведем медиану DK.
АК = КВ = 1 / 2АВ = 2: 2 = 1 см.
Рассмотрим ΔAKD - piвнобедрений (AD = АК = 1 см),
Если ∟A = 60 °, то ΔAKD - piвносторонний.
Итак, AD = АК = KD, ∟А = ∟AКD = ∟KDA = 60 °.
∟ВКD i ∟AKD - смежные, тогда ∟BKD + ∟AKD = 180 °.
∟BKD = 180 ° - 60 ° = 120 °.
ΔBKD - равнобедренный (KB = KD = 1 см), тогда
∟KBD = ∟KDB = (180 ° - 120 °): 2 = 30 °.
Рассмотрим ΔАВС:
∟A + ∟B + ∟C = 180 °. ∟C = 180 ° - (60 ° + 70 °); ∟C = 50 °.
∟B = ∟KBD + ∟DBC; ∟DBC = 70 ° - 30 ° = 40 °.
Рассмотрим ΔBDC:
∟DBC + ∟C + ∟BDC = 180 °.
40 ° + 50 ° + ∟BDC = 180 °. ∟BDC = 180 ° - 90 ° = 90 °.
Biдповидь: ∟BDC = 90 °; ∟DBC = 40 °; ∟C = 50 °
Объяснение: