Пусть один из смежных углов х градусов, тогда второй из смежных углов 3×х градусов. Нам известно, что сумма градусных мер смежных углов равна 180 градусов. Составляем уравнение:
х + 3 × х = 180;
х × (1 + 3) = 180;
х × 4 = 180 (для того, чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель);
Объяснение:
Решим данную задачу при уравнения.
Пусть один из смежных углов х градусов, тогда второй из смежных углов 3×х градусов. Нам известно, что сумма градусных мер смежных углов равна 180 градусов. Составляем уравнение:
х + 3 × х = 180;
х × (1 + 3) = 180;
х × 4 = 180 (для того, чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель);
х = 180 : 4;
х = 45 градусов — один из смежных углов;
45 × 3 = 135 градусов — второй из смежных углов.
ответ: 45 и 135 градусов.
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².