Пусть данные перпендикулярные прямые проходящие через центр О квадрата АВСД, пересекают стороны АВ, ВС, СД, ДА, соответственно в точках М, N, K, L(точки перечислены по часовой стрелке). При повороте относительно центра О квадрат на угол 90° по часовой стрелке прямая АВ переходит в прямую ВС, а прямая МК, в прямую NL, следовательно точка М пересечения прямых АВ и КМ переходит в точкуN пересечения прямых ВС и LN.Аналогично для остальных вершин четырехугольника MNKL. Таким образом при повороте относительно точки О на угол 90° четырехугольник MNKL переходит в себя, тоесть в квадрат.
ответ: В соответствии с классическим определением, уго� между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
ответ: В соответствии с классическим определением, уго� между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
Подробнее - на -
Объяснение: