1)Две прямые пересекаются, если их коэффициенты при х и у непропорциональны. Параллельны, еcли коэффициенты при х и у пропорциональны, но свободные коэффициенты не пропорциональны. Совпадают, если все коэффициенты равны. Проверим, пересекаются ли они: {3=α*4 {2=α*(-1)
{α=3/4 {α=-2 Нет такого α, при котором коэффициенты при х и у пропорциональны⇒прямые пересекаются.
2)Рисунок во вложении. Пусть высота дерева h. В прямоугольном треугольнике sin - отношение противолежащей стороны к гипотенузе. sin60=h/a⇒h=sin60*4=(√3/2)*4=√3/2(см)
3)Рисунок во вложении. Рассмотрим треугольники DAB и DAC. треугольники DAB и DAC - прямоугольные, катеты которых равны 3 и 4. По тереме Пифагора находим DB=DC. DB=DC=5(египетский треугольник) BC=BA=3(треугольник равносторонний) P(BCD)=5+5+3=13(см)
Параллельны, еcли коэффициенты при х и у пропорциональны, но свободные коэффициенты не пропорциональны.
Совпадают, если все коэффициенты равны.
Проверим, пересекаются ли они:
{3=α*4
{2=α*(-1)
{α=3/4
{α=-2
Нет такого α, при котором коэффициенты при х и у пропорциональны⇒прямые пересекаются.
2)Рисунок во вложении.
Пусть высота дерева h. В прямоугольном треугольнике sin - отношение противолежащей стороны к гипотенузе.
sin60=h/a⇒h=sin60*4=(√3/2)*4=√3/2(см)
3)Рисунок во вложении.
Рассмотрим треугольники DAB и DAC.
треугольники DAB и DAC - прямоугольные, катеты которых равны 3 и 4.
По тереме Пифагора находим DB=DC.
DB=DC=5(египетский треугольник)
BC=BA=3(треугольник равносторонний)
P(BCD)=5+5+3=13(см)