Радиус окружности равен 4 см. На продолжении радиуса взята точка Е, отстоящая от центра О окружности на расстояние 8 см. Через точку Е проведён луч, пересекающий окружность в точках В и С ( рис. 19.6 ), ВЕ = 10. Найдите СЕ.
Поскольку в условиях указана только величина расстояния от центра окружности до прямой, но не указано под каким углом проведена воображаемая линия от центра до прямой, то возможны следующие варианты:
1. Прямая представляет собой касательную к окружности. В этом случае окружность и прямая будут иметь только одну общую точку, расположенную на расстоянии радиуса окружности от ее центра.
2. Прямая может пересекать окружность как угодно. В этом случае мы получим 2 точки пересечения, каждая из которых будет удалена от центра окружности на расстояние радиуса.
Школьные Знания.com
Какой у тебя вопрос?
Избавься от ограничений
ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ
Аккаунт удален
03.09.2020
Геометрия
5 - 9 классы
+5 б.
ответ дан
8. Табаны AC, B төбесінің сыртқы бұрышы 112°-қа тең болатын
теңбүйірлі АВС үшбұрышының бұрыштарын табыңдар.
1
СМОТРЕТЬ ОТВЕТ
Спросите о заданном вопросе...
ответ
5,0/5
6
Kazakhtan123
хорошист
16 ответов
413 пользователей, получивших
Берілген: Δ АВС-изоссельдер
∠В = 112 ° - сыртқы бұрыш
Табу бұрыштары ДАВС : ∠АВС -? ,ВС VSA -? , ∠Сіз-?
Шешімі.
Δ АВС қарастырайық :
АВ= ЖС (бүйір жақтары )
∠ВАС = вс ВСА = х (АС негізіндегі бұрыштар)
Үшбұрыштың сыртқы бұрышы онымен байланысты емес екі бұрыштың қосындысына тең, сондықтан :
∠СІЗ = ВС ВСА = В В : 2 ⇒ ВАС СІЗ = ВС ВСА = 112: 2 = 56°
Сыртқы ∠В және АВ АВС-іргелес бұрыштар .
Іргелес бұрыштардың қосындысы 180°
∠АВС = 180-В В = >АВ АВС = 180-112 = 68°
Объяснение:
Поскольку в условиях указана только величина расстояния от центра окружности до прямой, но не указано под каким углом проведена воображаемая линия от центра до прямой, то возможны следующие варианты:
1. Прямая представляет собой касательную к окружности. В этом случае окружность и прямая будут иметь только одну общую точку, расположенную на расстоянии радиуса окружности от ее центра.
2. Прямая может пересекать окружность как угодно. В этом случае мы получим 2 точки пересечения, каждая из которых будет удалена от центра окружности на расстояние радиуса.