Радіус кола R = 12 см лежить у вершині прямого кута прямокутного трикутника з катетами а = 20, b =15. Чи перетинає коло гіпотинузу даного трикутника?
Пусть АBCD трапеция с бОльшим основанием АD. Опустим высоты ВН и СК на основание АD. Получим два равных прямоугольных треугольника, ABH=СDK, АН=КD=(AD-BC):2=18:2=9 см. Пусть 4х см высота ВН, 5х боковая сторона АВ. По теореме Пифагора: АВ²=ВН²+АН², подставим значения, получим (5х)²=(4х)²+9² 25х²=16х²+81 25х²-16х²=81 9х²=81 х²=81:9 х²=9 х1=-3<0 не подходит х2=3, 4*3=12 см высота ВН 5*3=15 см боковая сторона АВ=СD. Найдем основание трапеции Периметр АВСD=AB+BC+CD+AD подставим известные значения, получим 64=15+ВС+15+АD 64=30+BC+AD 64-30=BC+AD 34=BC+AD, воспользуемся формулой площади трапеции: S=(AB+BC)*BH/2=34*12/2=204 см² ответ: 204 см²
Объяснение:
1. у него равны 2 стороны(по рисунку) и треугольник; т.к. АОС и ДОС-вертикальные(равен по 2 сторонам и углу)
2.МОN=РОQ(вертикальные)
1=2(по рисунку), и рааная сторона(значит он равен по 2 углам и протеволежащей стороне)
3. одна сторона общая(по римунку), 1=2, 3=4.(равны по 2 углам и протеволежащей стороне)
4. одна сторона общая(по рисунку), 2 равные стороны, и также по рисунку видно, что 1 и 2 равны(по 2 сторонам и углу)
5. две стороны равны, и одна общая(равны по 3 сторонам)
6. 2 стороны равны и 1 общая(по рисунку), значит он равен по 3 сторонам
надеюсь нормально. названия я писать не стала, думаю Вы увидите на рисунке
Пусть 4х см высота ВН, 5х боковая сторона АВ. По теореме Пифагора:
АВ²=ВН²+АН², подставим значения, получим
(5х)²=(4х)²+9²
25х²=16х²+81
25х²-16х²=81
9х²=81
х²=81:9
х²=9
х1=-3<0 не подходит
х2=3,
4*3=12 см высота ВН
5*3=15 см боковая сторона АВ=СD.
Найдем основание трапеции
Периметр АВСD=AB+BC+CD+AD
подставим известные значения, получим
64=15+ВС+15+АD
64=30+BC+AD
64-30=BC+AD
34=BC+AD, воспользуемся формулой площади трапеции: S=(AB+BC)*BH/2=34*12/2=204 см²
ответ: 204 см²