Так как рисунок с расположением точек K, M, N отсутствует, пусть K∈AB; M∈BC; N∈AC. Радиусы в точку касания образуют прямые углы с касательными: OK⊥AB; OM⊥BC; ON⊥AC
Градусная мера дуги окружности равна градусной мере центрального угла, который опирается на эту дугу. ⇒ ∠MON = ∪MN = 110° ∠KON = ∪KN = 120°
пусть K∈AB; M∈BC; N∈AC.
Радиусы в точку касания образуют прямые углы с касательными:
OK⊥AB; OM⊥BC; ON⊥AC
Градусная мера дуги окружности равна градусной мере центрального угла, который опирается на эту дугу. ⇒
∠MON = ∪MN = 110°
∠KON = ∪KN = 120°
Сумма углов четырехугольника
(n - 2)*180°=(4 - 2)*180° = 2*180° = 360°
Четырехугольник CMON.
∠С = 360° - ∠ONC - ∠OMC - ∠MON =
= 360° - 90° - 90° - 110°= 70°
Четырехугольник AKON.
∠A = 360° - ∠OKA - ∠ONA - ∠KON =
= 360° - 90° - 90° - 120°= 60°
ΔABC: ∠B = 180° - ∠A - ∠C = 180° - 70° - 60° = 50°
ответ: углы треугольника 50°, 60°, 70°
1.Чтобы найти координаты второго конца отрезка, надо от удвоенных координат середины отрезка отнять координаты первого конца, т.е.
х=-8-(-6)=-2
у=10-(-7)=17 ответ С(-2;17)
2. Координаты центра х=(3+5)/2=4;у=(-1+7)/2=3 ответ О(4;3)
3. Найдем основания трапеции АВ, DC, высоту трапеции h=AD, среднюю линию l, площадь трапеции s=l*h, где l- средняя линия, h=AD- высота трапеции.
АВ=√(2-(-6))²+(3-3)²)√(8²+0²) =8/см/
DC=√(10²+0²)=10/см/
h=AD=√(0²+6²)=6/см/
l=(AB+DC)/2=(8+10)/2=9
s=l*h=9*6=54/см²/
ИСПРАВИЛ ВАШУ ОПЕЧАТКУ. С(4;-3), А НЕ (4;3), ИНАЧЕ НЕ ПОЛУЧИТЕ ТРАПЕЦИИ, ТРИ ТОЧКИ БУДУТ ЛЕЖАТЬ НА ОДНОЙ ПРЯМОЙ.