<ABD=180°-85°-30°=65°. <B=<ABD+<CBD=65°+65°=130° Треугольник АВС равнобедренный (АВ=ВС - дано), значит <BCA=<BAC=(180°-130°):2=25° Итак, BО (О - точка пересечения диагоналей) в треугольнике АВС биссектриса, высота и медиана. Следовательно, диагональ BD перпендикулярна диагонали АС. Но если в треугольнике ADC DO - высота и медиана (АО=ОС - доказано выше), то он равнобедренный и <ACD=<CAD=60°, а <C=25°+60°=85°. Тогда <CDO=30° и <D=30°+30°=60°. ответ: <A=85°, <B=130°, <C=85° и <D=60°
a) Найдем площадь треугольника. Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне (h₁ = 16 см)
S = 1/2 * a * h₁
S = 1/2 * 15 * 16 = 240/2 = 120 см²
Подставим неизвестную высоту h
120 = 1/2 * 20 * h
120 = 10h
h = 120/10
h = 12 см
ответ: h = 12 см
b) Треугольник прямоугольный. площадь прямоугольного треугольника равна половине произведения его катетов
S = 1/2 * 3 * 4 = 12/2 = 6 см²
Подставим площадь в формулу S = 1/2 * a * h
6 = 1/2 * 5 * h
6 = 2,5h
h = 6/2,5
h = 2,4 см
ответ: h = 2,4 см
c) Треугольник прямоугольный. Найдем его неизвестный катет по теореме Пифагора
b² = 29² - 20²
b² = 841 - 400
b² = 441
b = 21 см
Далее его площадь через произведение половины катетов
S = 1/2 * 20 * 21 = 10 * 21 = 210 см²
210 = 1/2 * 29 * h
210 = 14,5h
<B=<ABD+<CBD=65°+65°=130°
Треугольник АВС равнобедренный (АВ=ВС - дано), значит <BCA=<BAC=(180°-130°):2=25°
Итак, BО (О - точка пересечения диагоналей) в треугольнике АВС биссектриса, высота и медиана. Следовательно, диагональ BD перпендикулярна диагонали АС. Но если в треугольнике ADC DO - высота и медиана (АО=ОС - доказано выше), то он равнобедренный и <ACD=<CAD=60°, а <C=25°+60°=85°. Тогда <CDO=30° и <D=30°+30°=60°.
ответ: <A=85°, <B=130°, <C=85° и <D=60°