Пусть А, В, С и D - четыре точки, которые лежат в одной плоскости, причём прямые АВ и CD не пара- лельны, М— произвольная точка пространства, не при- надлежащая данной плоскости. Докажите, что прямая, по которой пересекаются плоскости АВМ и CDM, про- ходит через фиксированную точку, не зависящую от выбора точки М
26 - 2*5 = 16 (cм) - длина сторон-оснований.
16/2 = 8 (см) - длина средней линии.
ответ
ответ разместил: Гость
Все довольно таки просто: если угол Д=30⁰, а гипотенуза ΔАСД 24 см, то сторона АС в данном треугольнике равна половине гипотенузы, т.е. АС=½АД=24/2=12 см. Сторона АС в Δ АВС является гипотенузой, а угол ВАС равен 90-60=30⁰ ( поясняю: треугольник АСД прямоугольный, угол Д по условию 30⁰, значит угол САД равен 90-30=60⁰. Угол А по условию 90⁰, а высота АС делит его на 2 угла, один из которых 60⁰), значит ВС=½АС=12/2=6 см. ответ:6 смответ:
Объяснение:
1)120°
2)65°
3)60°
4)"="
Объяснение:
1) х угол при основании, их два; 4х угол при вершине; всего х+х+4х=6х и это 180°=> х=30
угол при вершине 4*30=120
2) (180-50)/2=130/2=65
3) в равностороннем треугольнике углы по 60°
биссектрисы их делят пополам, т.е. 30°
При пересечении биссектрис образуется треугольник, в котором 2 угла по 30°, отсюда 180°-30°*2=120°, но этот угол тупой. Острый угол является смежным с ним. Сумма смежных углов равна 180°, значит острый угол равен 180°-120°=60°
4) т.к. периметр это сумма всех сторон, а медиана, разбивая треугольник АВС на 2 треугольника(АМВ и АМС) является общей стороной и предполагает, что ВМ=СМ, то при равных периметрах третьи стороны равны.