Постройте треугольник авс по следующим данным: ав=4см вс=3см угол в=60градусов в полученном треугольники постройте биссектрису угла с скоро соч : ( за ранее : р : )
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Окружность360°, 3х+5х+10х=360° 18х=360 х=20 3*20=60 если начертит чертеж получим треугольник, две стороны которого равны радиусу, угол у вершины равен60° основание ьреугольника равно 12 см, отпустим с вершины треугольника на основание высоту, так как у нас треугольник равнобедренный, то эта высота будет и медианой и биссектрисой. когда отпусти высоту получим прямоугольный треуголник 12:2= 6 см, напротив лежит угол 30°, сторона в 6 см является катетом, а гипотенуза радиус, значит радиус равен 12см. по правилу катет лежащий напротив 30° равен половине гипотенузы.
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
3х+5х+10х=360°
18х=360
х=20
3*20=60
если начертит чертеж получим треугольник, две стороны которого равны радиусу, угол у вершины равен60° основание ьреугольника равно 12 см, отпустим с вершины треугольника на основание высоту, так как у нас треугольник равнобедренный, то эта высота будет и медианой и биссектрисой. когда отпусти высоту получим прямоугольный треуголник 12:2= 6 см, напротив лежит угол 30°, сторона в 6 см является катетом, а гипотенуза радиус, значит радиус равен 12см. по правилу катет лежащий напротив 30° равен половине гипотенузы.