Пусть шар радиусом R=5см пересекает плоскость равнобедренной трапеции с основаниями a=8√2см и b=4√2см так, что сечение шара касается всех сторон этой трапеции. Сечение шара - окружность радиуса r, она является вписанной в равнобедренную трапецию.
Радиус вписанной в равнобедренную трапецию окружности будет равен половине от среднего пропорционального между её основаниями, то есть:
r=1/2*√ab=1/2*√(8√2*4√2)=1/2*√64=4см
d - расстояние от центра шара до плоскости трапеции.
В остроугольном треугольнике ABC серединные перпендикуляры к сторонам BC и AC пересекаются в точке M. Известно, что MC = 14 см, ∠AВМ = 30°. Найдите расстояние от точки M до стороны AB. ответ дайте в сантиметрах.
Объяснение:
Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке — центре описанной окружности.
Значит МА=МВ=МС=R = 14 см.
Тогда ΔАМВ - равнобедренный с основанием АВ и ∠МАВ=∠МВА=30°.
Расстоянием от т.М до стороны АВ есть высота равнобедренного ΔАМВ.
Построим высоту МК. Получили прямоугольный ΔВМК с прямым ∠МКВ и гипотенузой МВ.
3см
Объяснение:
Пусть шар радиусом R=5см пересекает плоскость равнобедренной трапеции с основаниями a=8√2см и b=4√2см так, что сечение шара касается всех сторон этой трапеции. Сечение шара - окружность радиуса r, она является вписанной в равнобедренную трапецию.
Радиус вписанной в равнобедренную трапецию окружности будет равен половине от среднего пропорционального между её основаниями, то есть:
r=1/2*√ab=1/2*√(8√2*4√2)=1/2*√64=4см
d - расстояние от центра шара до плоскости трапеции.
По теореме Пифагора:
d=√(R²-r²)=√(25-16)=3см
7 см
Правильное условие:
В остроугольном треугольнике ABC серединные перпендикуляры к сторонам BC и AC пересекаются в точке M. Известно, что MC = 14 см, ∠AВМ = 30°. Найдите расстояние от точки M до стороны AB. ответ дайте в сантиметрах.
Объяснение:
Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке — центре описанной окружности.
Значит МА=МВ=МС=R = 14 см.
Тогда ΔАМВ - равнобедренный с основанием АВ и ∠МАВ=∠МВА=30°.
Расстоянием от т.М до стороны АВ есть высота равнобедренного ΔАМВ.
Построим высоту МК. Получили прямоугольный ΔВМК с прямым ∠МКВ и гипотенузой МВ.
Катет МК = sin∠MВK * MВ.
Т.к. ∠МВК = ∠АВМ = 30° и МА = 14 см, то
МК = sin 30° * 14 = 7 (см)